https://de.wikipedia.org/w/index.php?action=history&feed=atom&title=Geometrisches_Programm
Geometrisches Programm - Versionsgeschichte
2025-05-30T00:25:59Z
Versionsgeschichte dieser Seite in Wikipedia
MediaWiki 1.45.0-wmf.3
https://de.wikipedia.org/w/index.php?title=Geometrisches_Programm&diff=208135503&oldid=prev
Aka: https, Kleinkram
2021-01-27T15:09:54Z
<p>https, Kleinkram</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="de">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 27. Januar 2021, 17:09 Uhr</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Zeile 35:</td>
<td colspan="2" class="diff-lineno">Zeile 35:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\text{unter den Nebenbedingungen } & \tilde g_i(y)=\log \left( \sum_{k=1}^{N_i} e^{a_{i,k}^Ty+b_{i,k}} \right) \leq 0 & i = 1, \dots, p \\</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\text{unter den Nebenbedingungen } & \tilde g_i(y)=\log \left( \sum_{k=1}^{N_i} e^{a_{i,k}^Ty+b_{i,k}} \right) \leq 0 & i = 1, \dots, p \\</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> & \tilde h_j(y)=g_j^Ty + b_j =0 & j=1, \dots q \text{,}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> & \tilde h_j(y)=g_j^Ty + b_j =0 & j=1, \dots q \text{,}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>\end{align}</math><del style="font-weight: bold; text-decoration: none;"> </del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>\end{align}</math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>welches ''Geometrisches Programm in konvexer Form'' genannt wird. Es ist ein konvexes Optimierungsproblem. Wenn alle Funktionen Monomialfunktionen sind, vereinfacht sich dieses Problem zu einem [[Lineare Optimierung|linearen Optimierungsproblem]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>welches ''Geometrisches Programm in konvexer Form'' genannt wird. Es ist ein konvexes Optimierungsproblem. Wenn alle Funktionen Monomialfunktionen sind, vereinfacht sich dieses Problem zu einem [[Lineare Optimierung|linearen Optimierungsproblem]].</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Zeile 49:</td>
<td colspan="2" class="diff-lineno">Zeile 49:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Literatur ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Literatur ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Boyd, Stephen; Vandenberghe, Lieven (2004). Convex Optimization. Cambridge University Press. ISBN 978-0-521-83378-3. ([<del style="font-weight: bold; text-decoration: none;">http</del>://<del style="font-weight: bold; text-decoration: none;">www</del>.stanford.edu/~boyd/cvxbook/ online])</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Boyd, Stephen; Vandenberghe, Lieven (2004). Convex Optimization. Cambridge University Press. ISBN 978-0-521-83378-3. ([<ins style="font-weight: bold; text-decoration: none;">https</ins>://<ins style="font-weight: bold; text-decoration: none;">web</ins>.stanford.edu/~boyd/cvxbook/ online])</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:Konvexe Optimierung]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:Konvexe Optimierung]]</div></td>
</tr>
</table>
Aka
https://de.wikipedia.org/w/index.php?title=Geometrisches_Programm&diff=190200882&oldid=prev
Neutronstar2: /* Definition */ Gr
2019-07-07T09:55:25Z
<p><span class="autocomment">Definition: </span> Gr</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="de">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 7. Juli 2019, 11:55 Uhr</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Zeile 9:</td>
<td colspan="2" class="diff-lineno">Zeile 9:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\end{align} </math></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\end{align} </math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>heißt<del style="font-weight: bold; text-decoration: none;"> ein</del> ''<del style="font-weight: bold; text-decoration: none;">Geometrisches</del> Programm'' (in Posynomialform), wenn die <math> f, g_i </math> [[Posynomialfunktion]]en sind und die <math> h_j </math> [[Monomialfunktion]]en sind. Die Einschränkung <math> x \in \mathbb{R}^n_{++}:=\{x \in \mathbb{R}^n \, | \, x_i >0 \text{ für } i=1, \dots, n \} </math> ist hierbei stets implizit vorausgesetzt.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>heißt ''<ins style="font-weight: bold; text-decoration: none;">geometrisches</ins> Programm'' (in Posynomialform), wenn die <math> f, g_i </math> [[Posynomialfunktion]]en sind und die <math> h_j </math> [[Monomialfunktion]]en sind. Die Einschränkung <math> x \in \mathbb{R}^n_{++}:=\{x \in \mathbb{R}^n \, | \, x_i >0 \text{ für } i=1, \dots, n \} </math> ist hierbei stets implizit vorausgesetzt.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel ==</div></td>
</tr>
</table>
Neutronstar2
https://de.wikipedia.org/w/index.php?title=Geometrisches_Programm&diff=190200871&oldid=prev
Neutronstar2: Gr
2019-07-07T09:54:54Z
<p>Gr</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="de">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 7. Juli 2019, 11:54 Uhr</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Zeile 1:</td>
<td colspan="2" class="diff-lineno">Zeile 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Ein '''<del style="font-weight: bold; text-decoration: none;">Geometrisches</del> Programm''' ist ein spezielles Problem der [[Optimierung (Mathematik)|mathematischen Optimierung]], bei dem als Ziel- und Restriktionsfunktionen eine Verallgemeinerung von [[Polynom]]en zum Einsatz kommt. Insbesondere haben Geometrische Programme zwei Formen, von denen aber nur eine zur [[Konvexe Optimierung|konvexen Optimierung]] zählt.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Ein '''<ins style="font-weight: bold; text-decoration: none;">geometrisches</ins> Programm''' ist ein spezielles Problem der [[Optimierung (Mathematik)|mathematischen Optimierung]], bei dem als Ziel- und Restriktionsfunktionen eine Verallgemeinerung von [[Polynom]]en zum Einsatz kommt. Insbesondere haben Geometrische Programme zwei Formen, von denen aber nur eine zur [[Konvexe Optimierung|konvexen Optimierung]] zählt.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
</tr>
</table>
Neutronstar2
https://de.wikipedia.org/w/index.php?title=Geometrisches_Programm&diff=164916742&oldid=prev
Aka: Tippfehler entfernt
2017-04-25T20:36:35Z
<p>Tippfehler entfernt</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="de">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 25. April 2017, 22:36 Uhr</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Zeile 21:</td>
<td colspan="2" class="diff-lineno">Zeile 21:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>ist ein Geometrisches Programm.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>ist ein Geometrisches Programm.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Konvexe Form ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Konvexe Form ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">EIn</del> Geometrisches Programm lässt sich durch elementare Substitutionen in ein [[Konvexe Optimierung|konvexes Optimierungsproblem]] transformieren.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Ein</ins> Geometrisches Programm lässt sich durch elementare Substitutionen in ein [[Konvexe Optimierung|konvexes Optimierungsproblem]] transformieren.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Dazu setzt man zuerst <math> x_i=e^{y_i} </math> bzw. <math> y_i=\log x_i </math>. Damit wird jede Monomialfunktion</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Dazu setzt man zuerst <math> x_i=e^{y_i} </math> bzw. <math> y_i=\log x_i </math>. Damit wird jede Monomialfunktion</div></td>
</tr>
</table>
Aka
https://de.wikipedia.org/w/index.php?title=Geometrisches_Programm&diff=157562220&oldid=prev
부고: /* Literatur */
2016-09-01T07:26:19Z
<p><span class="autocomment">Literatur</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="de">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 1. September 2016, 09:26 Uhr</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Zeile 51:</td>
<td colspan="2" class="diff-lineno">Zeile 51:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Boyd, Stephen; Vandenberghe, Lieven (2004). Convex Optimization. Cambridge University Press. ISBN 978-0-521-83378-3. ([http://www.stanford.edu/~boyd/cvxbook/ online])</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Boyd, Stephen; Vandenberghe, Lieven (2004). Convex Optimization. Cambridge University Press. ISBN 978-0-521-83378-3. ([http://www.stanford.edu/~boyd/cvxbook/ online])</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:Optimierung]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:<ins style="font-weight: bold; text-decoration: none;">Konvexe </ins>Optimierung]]</div></td>
</tr>
</table>
부고
https://de.wikipedia.org/w/index.php?title=Geometrisches_Programm&diff=139123823&oldid=prev
FerdiBf: /* Konvexe Form */ Ausrichtung der Formel
2015-02-23T09:10:39Z
<p><span class="autocomment">Konvexe Form: </span> Ausrichtung der Formel</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="de">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 23. Februar 2015, 11:10 Uhr</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Zeile 30:</td>
<td colspan="2" class="diff-lineno">Zeile 30:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>wobei <math> b=\log c </math> und <math> a=(a_1, \dots, a_n) \in \mathbb{R}^n</math> ist. Posynomialfunktionen lassen sich analog als Summe von Exponentialfunktionen von affinen Funktionen ausdrücken. Durch Anwenden dieser Transformation und anschließendes Logarithmieren erhält man dann das Optimierungsproblem</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>wobei <math> b=\log c </math> und <math> a=(a_1, \dots, a_n) \in \mathbb{R}^n</math> ist. Posynomialfunktionen lassen sich analog als Summe von Exponentialfunktionen von affinen Funktionen ausdrücken. Durch Anwenden dieser Transformation und anschließendes Logarithmieren erhält man dann das Optimierungsproblem</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><math></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:</ins><math></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\begin{align}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\begin{align}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \text{Minimiere } & \tilde f(y)=\log \left( \sum_{k=1}^N e^{a_{k}^Ty+b_{k}} \right) & \\</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \text{Minimiere } & \tilde f(y)=\log \left( \sum_{k=1}^N e^{a_{k}^Ty+b_{k}} \right) & \\</div></td>
</tr>
</table>
FerdiBf
https://de.wikipedia.org/w/index.php?title=Geometrisches_Programm&diff=139078034&oldid=prev
79.206.155.86: /* Konvexe Form */
2015-02-21T19:34:13Z
<p><span class="autocomment">Konvexe Form</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="de">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 21. Februar 2015, 21:34 Uhr</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Zeile 37:</td>
<td colspan="2" class="diff-lineno">Zeile 37:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\end{align}</math> </div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\end{align}</math> </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>welches ''Geometrisches Programm in konvexer Form'' genannt wird. Es ist ein konvexes Optimierungsproblem. Wenn alle Funktionen <del style="font-weight: bold; text-decoration: none;">Monomialfunktioen</del> sind, vereinfacht sich dieses Problem zu einem [[Lineare Optimierung|linearen Optimierungsproblem]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>welches ''Geometrisches Programm in konvexer Form'' genannt wird. Es ist ein konvexes Optimierungsproblem. Wenn alle Funktionen <ins style="font-weight: bold; text-decoration: none;">Monomialfunktionen</ins> sind, vereinfacht sich dieses Problem zu einem [[Lineare Optimierung|linearen Optimierungsproblem]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel für die konvexe Form ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel für die konvexe Form ==</div></td>
</tr>
</table>
79.206.155.86
https://de.wikipedia.org/w/index.php?title=Geometrisches_Programm&diff=139077987&oldid=prev
HilberTraum: /* Beispiel für die konvexe Form */ typo
2015-02-21T19:32:40Z
<p><span class="autocomment">Beispiel für die konvexe Form: </span> typo</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="de">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 21. Februar 2015, 21:32 Uhr</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Zeile 40:</td>
<td colspan="2" class="diff-lineno">Zeile 40:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel für die konvexe Form ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel für die konvexe Form ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Transformiert man das oben angeführte Geometrische Programm in Posynomialform in <del style="font-weight: bold; text-decoration: none;">dei</del> Geometrische Form, so lautet es</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Transformiert man das oben angeführte Geometrische Programm in Posynomialform in <ins style="font-weight: bold; text-decoration: none;">die</ins> Geometrische Form, so lautet es</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math> \begin{align}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math> \begin{align}</div></td>
</tr>
</table>
HilberTraum
https://de.wikipedia.org/w/index.php?title=Geometrisches_Programm&diff=139077909&oldid=prev
HilberTraum: /* Definition */ typo
2015-02-21T19:30:30Z
<p><span class="autocomment">Definition: </span> typo</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="de">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 21. Februar 2015, 21:30 Uhr</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Zeile 2:</td>
<td colspan="2" class="diff-lineno">Zeile 2:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Definition ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">EIn</del> Optimierungsproblem der Form</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Ein</ins> Optimierungsproblem der Form</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math> \begin{align}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:<math> \begin{align}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\text{Minimiere } & f(x) & \\</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\text{Minimiere } & f(x) & \\</div></td>
</tr>
</table>
HilberTraum
https://de.wikipedia.org/w/index.php?title=Geometrisches_Programm&diff=139058885&oldid=prev
Peter Gröbner: /* Konvexe Form */
2015-02-21T08:12:15Z
<p><span class="autocomment">Konvexe Form</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="de">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 21. Februar 2015, 10:12 Uhr</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Zeile 34:</td>
<td colspan="2" class="diff-lineno">Zeile 34:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \text{Minimiere } & \tilde f(y)=\log \left( \sum_{k=1}^N e^{a_{k}^Ty+b_{k}} \right) & \\</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div> \text{Minimiere } & \tilde f(y)=\log \left( \sum_{k=1}^N e^{a_{k}^Ty+b_{k}} \right) & \\</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\text{unter den Nebenbedingungen } & \tilde g_i(y)=\log \left( \sum_{k=1}^{N_i} e^{a_{i,k}^Ty+b_{i,k}} \right) \leq 0 & i = 1, \dots, p \\</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>\text{unter den Nebenbedingungen } & \tilde g_i(y)=\log \left( \sum_{k=1}^{N_i} e^{a_{i,k}^Ty+b_{i,k}} \right) \leq 0 & i = 1, \dots, p \\</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div> & \tilde h_j(y)=g_j^Ty + b_j =0 & j=1, \dots q</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div> & \tilde h_j(y)=g_j^Ty + b_j =0 & j=1, \dots q<ins style="font-weight: bold; text-decoration: none;"> \text{,}</ins></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>\end{align}<del style="font-weight: bold; text-decoration: none;"> </del></math><del style="font-weight: bold; text-decoration: none;">,</del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>\end{align}</math><ins style="font-weight: bold; text-decoration: none;"> </ins></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>welches ''Geometrisches Programm in konvexer Form'' genannt wird. Es ist ein konvexes Optimierungsproblem. Wenn alle Funktionen Monomialfunktioen sind, vereinfacht sich dieses Problem zu einem [[Lineare Optimierung|<del style="font-weight: bold; text-decoration: none;">linearem</del> Optimierungsproblem]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>welches ''Geometrisches Programm in konvexer Form'' genannt wird. Es ist ein konvexes Optimierungsproblem. Wenn alle Funktionen Monomialfunktioen sind, vereinfacht sich dieses Problem zu einem [[Lineare Optimierung|<ins style="font-weight: bold; text-decoration: none;">linearen</ins> Optimierungsproblem]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel für die konvexe Form ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel für die konvexe Form ==</div></td>
</tr>
</table>
Peter Gröbner