https://de.wikipedia.org/w/api.php?action=feedcontributions&feedformat=atom&user=ProteinBoxBot Wikipedia - Benutzerbeiträge [de] 2025-07-29T11:24:56Z Benutzerbeiträge MediaWiki 1.45.0-wmf.11 https://de.wikipedia.org/w/index.php?title=Psoriasin&diff=157495143 Psoriasin 2016-05-20T13:54:41Z <p>ProteinBoxBot: Updating to new gene infobox populated via wikidata</p> <hr /> <div>{{Infobox_gene}}<br /> '''[[S100 protein|S100]] calcium-binding protein A7''' ('''S100A7'''), also known as psoriasin, is a [[protein]] that in humans is encoded by the ''S100A7'' [[gene]].&lt;ref name=&quot;pmid1940442&quot;&gt;{{cite journal | vauthors = Madsen P, Rasmussen HH, Leffers H, Honoré B, Dejgaard K, Olsen E, Kiil J, Walbum E, Andersen AH, Basse B | title = Molecular cloning, occurrence, and expression of a novel partially secreted protein &quot;psoriasin&quot; that is highly up-regulated in psoriatic skin | journal = J. Invest. Dermatol. | volume = 97 | issue = 4 | pages = 701–12 | date = Nov 1991 | pmid = 1940442 | pmc = | doi = 10.1111/1523-1747.ep12484041 }}&lt;/ref&gt;<br /> <br /> == Function ==<br /> <br /> S100A7 is a member of the S100 family of proteins containing 2 [[EF hand|EF-hand]] calcium-binding motifs. S100 proteins are localized in the [[cytoplasm]] and/or [[cell nucleus|nucleus]] of a wide range of cells, and involved in the regulation of a number of cellular processes such as [[cell cycle]] progression and [[Cellular differentiation|differentiation]]. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein differs from the other S100 proteins of known structure in its lack of calcium binding ability in one EF-hand at the [[N-terminus]]. The protein functions as a prominent antimicrobial peptide mainly against ''[[Escherichia coli|E. coli]]''.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: S100A7 S100 calcium binding protein A7| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=6278| accessdate = }}&lt;/ref&gt;<br /> <br /> S100A7 also displays antimicrobial properties. It is secreted by epithilial cells of the skin and is a key antimicrobial protein against Escherichia Coli by disrupting their cell membranes. This is the reason that in countries with poor sanitation,human skin is exposed E.coli strains from faecal matter but it does not usually result in an infection.&lt;ref&gt;Bulet, P., et al. 2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunology Review 198:169–184.&lt;/ref&gt;<br /> <br /> S100A7 is highly homologous to [[S100A15]] ([[koebnerisin]]) but distinct in expression, tissue distribution and function.&lt;ref name=&quot;pmid18606705&quot;&gt;{{cite journal | vauthors = Wolf R, Howard OM, Dong HF, Voscopoulos C, Boeshans K, Winston J, Divi R, Gunsior M, Goldsmith P, Ahvazi B, Chavakis T, Oppenheim JJ, Yuspa SH | title = Chemotactic activity of S100A7 (Psoriasin) is mediated by the receptor for advanced glycation end products and potentiates inflammation with highly homologous but functionally distinct S100A15 | journal = J. Immunol. | volume = 181 | issue = 2 | pages = 1499–506 | date = July 2008 | pmid = 18606705 | pmc = 2435511 | doi = 10.4049/jimmunol.181.2.1499 }}&lt;/ref&gt;&lt;ref name=&quot;pmid19136201&quot;&gt;{{cite journal | vauthors = Wolf R, Voscopoulos C, Winston J, Dharamsi A, Goldsmith P, Gunsior M, Vonderhaar BK, Olson M, Watson PH, Yuspa SH | title = Highly homologous hS100A15 and hS100A7 proteins are distinctly expressed in normal breast tissue and breast cancer | journal = Cancer Lett. | volume = 277 | issue = 1 | pages = 101–7 | date = May 2009 | pmid = 19136201 | pmc = 2680177 | doi = 10.1016/j.canlet.2008.11.032 }}&lt;/ref&gt;&lt;ref name=&quot;pmid22374659&quot;&gt;{{cite journal | vauthors = Zwicker S, Bureik D, Ruzicka T, Wolf R | title = [Friend or Foe?--Psoriasin and Koebnerisin: multifunctional defence molecules in skin differentiation, tumorigenesis and inflammation] | language = German | journal = Dtsch. Med. Wochenschr. | volume = 137 | issue = 10 | pages = 491–4 | date = March 2012 | pmid = 22374659 | doi = 10.1055/s-0031-1299015 }}&lt;/ref&gt;&lt;ref name=&quot;pmid22402441&quot;&gt;{{cite journal | vauthors = Hegyi Z, Zwicker S, Bureik D, Peric M, Koglin S, Batycka-Baran A, Prinz JC, Ruzicka T, Schauber J, Wolf R | title = Vitamin D analog calcipotriol suppresses the Th17 cytokine-induced proinflammatory S100 &quot;alarmins&quot; psoriasin (S100A7) and koebnerisin (S100A15) in psoriasis | journal = J. Invest. Dermatol. | volume = 132 | issue = 5 | pages = 1416–24 | date = May 2012 | pmid = 22402441 | doi = 10.1038/jid.2011.486 }}&lt;/ref&gt;<br /> <br /> == Clinical significance ==<br /> <br /> This protein is markedly over-expressed in the skin lesions of [[psoriasis|psoriatic]] patients, but is excluded as a candidate gene for familial psoriasis susceptibility.&lt;ref name=&quot;entrez&quot;/&gt; The expression of psoriasin is induced in skin wounds&lt;ref name=&quot;pmid17159909&quot;&gt;{{cite journal | vauthors = Lee KC, Eckert RL | title = S100A7 (Psoriasin)--mechanism of antibacterial action in wounds | journal = J. Invest. Dermatol. | volume = 127 | issue = 4 | pages = 945–57 | date = April 2007 | pmid = 17159909 | doi = 10.1038/sj.jid.5700663 }}&lt;/ref&gt; through activation of the [[epidermal growth factor receptor]].<br /> <br /> == Interactions ==<br /> <br /> S100A7 has been shown to [[Protein-protein interaction|interact]] with [[COP9 constitutive photomorphogenic homolog subunit 5]],&lt;ref name=&quot;pmid12702588&quot;&gt;{{cite journal | vauthors = Emberley ED, Niu Y, Leygue E, Tomes L, Gietz RD, Murphy LC, Watson PH | title = Psoriasin interacts with Jab1 and influences breast cancer progression | journal = Cancer Res. | volume = 63 | issue = 8 | pages = 1954–61 | date = April 2003 | pmid = 12702588 | doi = }}&lt;/ref&gt; [[FABP5]]&lt;ref name=&quot;pmid12839573&quot;&gt;{{cite journal | vauthors = Ruse M, Broome AM, Eckert RL | title = S100A7 (psoriasin) interacts with epidermal fatty acid binding protein and localizes in focal adhesion-like structures in cultured keratinocytes | journal = J. Invest. Dermatol. | volume = 121 | issue = 1 | pages = 132–41 | date = July 2003 | pmid = 12839573 | doi = 10.1046/j.1523-1747.2003.12309.x }}&lt;/ref&gt;&lt;ref name=&quot;pmid10331666&quot;&gt;{{cite journal | vauthors = Hagens G, Roulin K, Hotz R, Saurat JH, Hellman U, Siegenthaler G | title = Probable interaction between S100A7 and E-FABP in the cytosol of human keratinocytes from psoriatic scales | journal = Mol. Cell. Biochem. | volume = 192 | issue = 1-2 | pages = 123–8 | date = February 1999 | pmid = 10331666 | doi = 10.1023/A:1006894909694 }}&lt;/ref&gt; and [[RANBP9]].&lt;ref name=&quot;pmid12421467&quot;&gt;{{cite journal | vauthors = Emberley ED, Gietz RD, Campbell JD, HayGlass KT, Murphy LC, Watson PH | title = RanBPM interacts with psoriasin in vitro and their expression correlates with specific clinical features in vivo in breast cancer | journal = BMC Cancer | volume = 2 | issue = | pages = 28 | date = November 2002 | pmid = 12421467 | pmc = 137593 | doi = 10.1186/1471-2407-2-28 }}&lt;/ref&gt;<br /> <br /> S100A7 interacts with [[RAGE (receptor)|RAGE]] (receptor of advanced glycated end products).&lt;ref name=&quot;pmid18606705&quot;/&gt;&lt;ref name=&quot;pmid22795619&quot;&gt;{{cite journal | vauthors = Winston J, Wolf R | title = Psoriasin (S100A7) promotes migration of a squamous carcinoma cell line | journal = J. Dermatol. Sci. | volume = 67 | issue = 3 | pages = 205–7 | date = September 2012 | pmid = 22795619 | doi = 10.1016/j.jdermsci.2012.06.009 }}&lt;/ref&gt;<br /> <br /> == References ==<br /> {{reflist|35em}}<br /> <br /> == Further reading ==<br /> {{refbegin|35em}}<br /> * {{cite journal | vauthors = Schäfer BW, Heizmann CW | title = The S100 family of EF-hand calcium-binding proteins: functions and pathology | journal = Trends Biochem. Sci. | volume = 21 | issue = 4 | pages = 134–40 | year = 1996 | pmid = 8701470 | doi = 10.1016/S0968-0004(96)80167-8 }}<br /> * {{cite journal | vauthors = Watson PH, Leygue ER, Murphy LC | title = Psoriasin (S100A7) | journal = Int. J. Biochem. Cell Biol. | volume = 30 | issue = 5 | pages = 567–71 | year = 1998 | pmid = 9693957 | doi = 10.1016/S1357-2725(97)00066-6 }}<br /> * {{cite journal | vauthors = Rasmussen HH, van Damme J, Puype M, Gesser B, Celis JE, Vandekerckhove J | title = Microsequences of 145 proteins recorded in the two-dimensional gel protein database of normal human epidermal keratinocytes | journal = Electrophoresis | volume = 13 | issue = 12 | pages = 960–9 | year = 1992 | pmid = 1286667 | doi = 10.1002/elps.11501301199 }}<br /> * {{cite journal | vauthors = Schäfer BW, Wicki R, Engelkamp D, Mattei MG, Heizmann CW | title = Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family | journal = Genomics | volume = 25 | issue = 3 | pages = 638–43 | year = 1995 | pmid = 7759097 | doi = 10.1016/0888-7543(95)80005-7 }}<br /> * {{cite journal | vauthors = Hoffmann HJ, Olsen E, Etzerodt M, Madsen P, Thøgersen HC, Kruse T, Celis JE | title = Psoriasin binds calcium and is upregulated by calcium to levels that resemble those observed in normal skin | journal = J. Invest. Dermatol. | volume = 103 | issue = 3 | pages = 370–5 | year = 1994 | pmid = 8077703 | doi = 10.1111/1523-1747.ep12395202 }}<br /> * {{cite journal | vauthors = Bürgisser DM, Siegenthaler G, Kuster T, Hellman U, Hunziker P, Birchler N, Heizmann CW | title = Amino acid sequence analysis of human S100A7 (psoriasin) by tandem mass spectrometry | journal = Biochem. Biophys. Res. Commun. | volume = 217 | issue = 1 | pages = 257–63 | year = 1995 | pmid = 8526920 | doi = 10.1006/bbrc.1995.2772 }}<br /> * {{cite journal | vauthors = Celis JE, Rasmussen HH, Vorum H, Madsen P, Honoré B, Wolf H, Orntoft TF | title = Bladder squamous cell carcinomas express psoriasin and externalize it to the urine | journal = J. Urol. | volume = 155 | issue = 6 | pages = 2105–12 | year = 1996 | pmid = 8618345 | doi = 10.1016/S0022-5347(01)66118-4 }}<br /> * {{cite journal | vauthors = Brodersen DE, Etzerodt M, Madsen P, Celis JE, Thøgersen HC, Nyborg J, Kjeldgaard M | title = EF-hands at atomic resolution: the structure of human psoriasin (S100A7) solved by MAD phasing | journal = Structure | volume = 6 | issue = 4 | pages = 477–89 | year = 1998 | pmid = 9562557 | doi = 10.1016/S0969-2126(98)00049-5 }}<br /> * {{cite journal | vauthors = Brodersen DE, Nyborg J, Kjeldgaard M | title = Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states | journal = Biochemistry | volume = 38 | issue = 6 | pages = 1695–704 | year = 1999 | pmid = 10026247 | doi = 10.1021/bi982483d }}<br /> * {{cite journal | vauthors = Semprini S, Capon F, Bovolenta S, Bruscia E, Pizzuti A, Fabrizi G, Schietroma C, Zambruno G, Dallapiccola B, Novelli G | title = Genomic structure, promoter characterisation and mutational analysis of the S100A7 gene: exclusion of a candidate for familial psoriasis susceptibility | journal = Hum. Genet. | volume = 104 | issue = 2 | pages = 130–4 | year = 1999 | pmid = 10190323 | doi = 10.1007/s004390050925 }}<br /> * {{cite journal | vauthors = Hagens G, Masouyé I, Augsburger E, Hotz R, Saurat JH, Siegenthaler G | title = Calcium-binding protein S100A7 and epidermal-type fatty acid-binding protein are associated in the cytosol of human keratinocytes | journal = Biochem. J. | volume = 339 ( Pt 2) | issue = 2 | pages = 419–27 | year = 1999 | pmid = 10191275 | pmc = 1220173 | doi = 10.1042/0264-6021:3390419 }}<br /> * {{cite journal | vauthors = Hagens G, Roulin K, Hotz R, Saurat JH, Hellman U, Siegenthaler G | title = Probable interaction between S100A7 and E-FABP in the cytosol of human keratinocytes from psoriatic scales | journal = Mol. Cell. Biochem. | volume = 192 | issue = 1-2 | pages = 123–8 | year = 1999 | pmid = 10331666 | doi = 10.1023/A:1006894909694 }}<br /> * {{cite journal | vauthors = Al-Haddad S, Zhang Z, Leygue E, Snell L, Huang A, Niu Y, Hiller-Hitchcock T, Hole K, Murphy LC, Watson PH | title = Psoriasin (S100A7) expression and invasive breast cancer | journal = Am. J. Pathol. | volume = 155 | issue = 6 | pages = 2057–66 | year = 1999 | pmid = 10595935 | pmc = 1866920 | doi = 10.1016/S0002-9440(10)65524-1 }}<br /> * {{cite journal | vauthors = Dias Neto E, Correa RG, Verjovski-Almeida S, Briones MR, Nagai MA, da Silva W, Zago MA, Bordin S, Costa FF, Goldman GH, Carvalho AF, Matsukuma A, Baia GS, Simpson DH, Brunstein A, de Oliveira PS, Bucher P, Jongeneel CV, O'Hare MJ, Soares F, Brentani RR, Reis LF, de Souza SJ, Simpson AJ | title = Shotgun sequencing of the human transcriptome with ORF expressed sequence tags | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 97 | issue = 7 | pages = 3491–6 | year = 2000 | pmid = 10737800 | pmc = 16267 | doi = 10.1073/pnas.97.7.3491 }}<br /> * {{cite journal | vauthors = Ruse M, Lambert A, Robinson N, Ryan D, Shon KJ, Eckert RL | title = S100A7, S100A10, and S100A11 are transglutaminase substrates | journal = Biochemistry | volume = 40 | issue = 10 | pages = 3167–73 | year = 2001 | pmid = 11258932 | doi = 10.1021/bi0019747 }}<br /> * {{cite journal | vauthors = Enerbäck C, Porter DA, Seth P, Sgroi D, Gaudet J, Weremowicz S, Morton CC, Schnitt S, Pitts RL, Stampl J, Barnhart K, Polyak K | title = Psoriasin expression in mammary epithelial cells in vitro and in vivo | journal = Cancer Res. | volume = 62 | issue = 1 | pages = 43–7 | year = 2002 | pmid = 11782356 | doi = }}<br /> * {{cite journal | vauthors = Gemmill RM, Bemis LT, Lee JP, Sozen MA, Baron A, Zeng C, Erickson PF, Hooper JE, Drabkin HA | title = The TRC8 hereditary kidney cancer gene suppresses growth and functions with VHL in a common pathway | journal = Oncogene | volume = 21 | issue = 22 | pages = 3507–16 | year = 2002 | pmid = 12032852 | doi = 10.1038/sj.onc.1205437 }}<br /> {{refend}}<br /> <br /> {{PDB Gallery|geneid=6278}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Muskel-Phosphofructokinase&diff=193712999 Muskel-Phosphofructokinase 2016-05-20T13:12:26Z <p>ProteinBoxBot: Updating to new gene infobox populated via wikidata</p> <hr /> <div>{{Infobox_gene}}<br /> '''6-phosphofructokinase, muscle type''' is an [[enzyme]] that in humans is encoded by the ''PFKM'' [[gene]] on chromosome 12. <br /> Three [[phosphofructokinase]] isozymes exist in humans: muscle, [[PFKL|liver]] and [[PFKP|platelet]]. These isozymes function as [[protein subunit|subunits]] of the mammalian [[tetramer]] phosphofructokinase, which [[catalyze]]s the [[phosphorylation]] of [[fructose-6-phosphate]] to [[fructose-1,6-bisphosphate]]. Tetramer composition varies depending on tissue type. This gene encodes the muscle-type isozyme. Mutations in this gene have been associated with [[glycogenosis type VII|glycogen storage disease type VII]], also known as Tarui disease. [[Alternatively spliced]] transcript variants have been described.[provided by RefSeq, Nov 2009]&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: PFKM phosphofructokinase, muscle| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=5213| accessdate = }}&lt;/ref&gt;<br /> <br /> == Structure ==<br /> <br /> === Gene ===<br /> This gene is found on chromosome 12.&lt;ref name=&quot;entrez&quot;/&gt; The coding region in ''PFKM'' only shares a 68% similarity with that of the liver-type ''[[PFKL]]''.&lt;ref name=pmid2533063&gt;{{cite journal | vauthors = Levanon D, Danciger E, Dafni N, Bernstein Y, Elson A, Moens W, Brandeis M, Groner Y | title = The primary structure of human liver type phosphofructokinase and its comparison with other types of PFK | journal = Dna | volume = 8 | issue = 10 | pages = 733–43 | date = Dec 1989 | pmid = 2533063 | doi=10.1089/dna.1989.8.733}}&lt;/ref&gt;<br /> <br /> === Protein ===<br /> This 85-kDa protein is one of two subunit types that comprise the seven tetrameric PFK isozymes.&lt;ref name=pmid6444721&gt;{{cite journal | vauthors = Vora S, Seaman C, Durham S, Piomelli S | title = Isozymes of human phosphofructokinase: identification and subunit structural characterization of a new system | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 77 | issue = 1 | pages = 62–6 | date = Jan 1980 | pmid = 6444721 | doi=10.1073/pnas.77.1.62 | pmc=348208}}&lt;/ref&gt;&lt;ref name=pmid6227635&gt;{{cite journal | vauthors = Vora S, Davidson M, Seaman C, Miranda AF, Noble NA, Tanaka KR, Frenkel EP, Dimauro S | title = Heterogeneity of the molecular lesions in inherited phosphofructokinase deficiency | journal = The Journal of Clinical Investigation | volume = 72 | issue = 6 | pages = 1995–2006 | date = Dec 1983 | pmid = 6227635 | doi = 10.1172/JCI111164 | pmc=437040}}&lt;/ref&gt; The muscle isozyme ([[PFK-1]]) is composed solely of PFKM.&lt;ref name=pmid6444721/&gt;&lt;ref name=pmid6445244&gt;{{cite journal | vauthors = Koster JF, Slee RG, Van Berkel TJ | title = Isoenzymes of human phosphofructokinase | journal = Clinica Chimica Acta; International Journal of Clinical Chemistry | volume = 103 | issue = 2 | pages = 169–73 | date = Apr 1980 | pmid = 6445244 | doi=10.1016/0009-8981(80)90210-7}}&lt;/ref&gt;&lt;ref name=pmid22133655&gt;{{cite journal | vauthors = Musumeci O, Bruno C, Mongini T, Rodolico C, Aguennouz M, Barca E, Amati A, Cassandrini D, Serlenga L, Vita G, Toscano A | title = Clinical features and new molecular findings in muscle phosphofructokinase deficiency (GSD type VII) | journal = Neuromuscular Disorders | volume = 22 | issue = 4 | pages = 325–30 | date = Apr 2012 | pmid = 22133655 | doi = 10.1016/j.nmd.2011.10.022 }}&lt;/ref&gt;<br /> The liver PFK (PFK-5) contains solely the second subunit type, PFKL, while the erythrocyte PFK includes five isozymes composed of different combinations of PFKM and PFKL.&lt;ref name=pmid6444721/&gt;&lt;ref name=pmid6227635/&gt;&lt;ref name=pmid22133655/&gt; These subunits evolved from a common [[prokaryotic]] ancestor via [[gene duplication]] and mutation events. Generally, the [[N-terminal]] of the subunits carries out their catalytic activity while the [[C-terminal]] contains allosteric [[ligand]] binding sites.&lt;ref name=pmid22474333&gt;{{cite journal | vauthors = Brüser A, Kirchberger J, Kloos M, Sträter N, Schöneberg T | title = Functional linkage of adenine nucleotide binding sites in mammalian muscle 6-phosphofructokinase | journal = The Journal of Biological Chemistry | volume = 287 | issue = 21 | pages = 17546–53 | date = May 2012 | pmid = 22474333 | doi = 10.1074/jbc.M112.347153 }}&lt;/ref&gt; In particular, the binding site for the PFK inhibitor [[citrate]] is found in the PFKL C-terminal region.&lt;ref name=pmid21124851&gt;{{cite journal | vauthors = Usenik A, Legiša M | title = Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase | journal = PLOS ONE | volume = 5 | issue = 11 | pages = e15447 | date = 23 November 2010 | pmid = 21124851 | doi = 10.1371/journal.pone.0015447 | pmc=2990764}}&lt;/ref&gt;<br /> <br /> == Function ==<br /> This gene encodes one of three protein subunits of PFK, which are expressed and combined to form the tetrameric PFK in a tissue-specific manner. As a PFK subunit, PFKL is involved in catalyzing the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate. This irreversible reaction serves as the major rate-limiting step of glycolysis.&lt;ref name=pmid6444721/&gt;&lt;ref name=pmid22133655/&gt;&lt;ref name=pmid22474333/&gt;&lt;ref name=pmid26194095&gt;{{cite journal | vauthors = Graham DB, Becker CE, Doan A, Goel G, Villablanca EJ, Knights D, Mok A, Ng AC, Doench JG, Root DE, Clish CB, Xavier RJ | title = Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst | journal = Nature Communications | volume = 6 | pages = 7838 | date = 21 July 2015 | pmid = 26194095 | doi = 10.1038/ncomms8838 }}&lt;/ref&gt;<br /> <br /> Though the PFKM subunit majorly incorporates into muscle and erythrocyte PFKs, PFKM also is expressed in the [[heart]], [[brain]], and [[testis]].&lt;ref name=pmid156693&gt;{{cite journal | vauthors = Kahn A, Meienhofer MC, Cottreau D, Lagrange JL, Dreyfus JC | title = Phosphofructokinase (PFK) isozymes in man. I. Studies of adult human tissues | journal = Human Genetics | volume = 48 | issue = 1 | pages = 93–108 | date = Apr 1979 | pmid = 156693 | doi=10.1007/bf00273280}}&lt;/ref&gt;<br /> <br /> == Clinical significance ==<br /> As the erythrocyte PFK is composed of both PFKL and PFKM, this [[Homogeneity and heterogeneity#Heterogeneity|heterogeneic]] composition is attributed with the differential PFK activity and organ involvement observed in some inherited PFK deficiency states in which [[myopathy]] or [[hemolysis]] or both can occur, such as glycogenosis type VII, also known as Tarui disease.&lt;ref name=pmid6444721/&gt;&lt;ref name=pmid22133655/&gt;&lt;ref name=pmid24306210&gt;{{cite journal | vauthors = Keildson S, Fadista J, Ladenvall C, Hedman ÅK, Elgzyri T, Small KS, Grundberg E, Nica AC, Glass D, Richards JB, Barrett A, Nisbet J, Zheng HF, Rönn T, Ström K, Eriksson KF, Prokopenko I, Spector TD, Dermitzakis ET, Deloukas P, McCarthy MI, Rung J, Groop L, Franks PW, Lindgren CM, Hansson O | title = Expression of phosphofructokinase in skeletal muscle is influenced by genetic variation and associated with insulin sensitivity | journal = Diabetes | volume = 63 | issue = 3 | pages = 1154–65 | date = Mar 2014 | pmid = 24306210 | doi = 10.2337/db13-1301 }}&lt;/ref&gt; Notably, mutations in ''PFKM'' have been shown to cause Tarui disease due to homozygosity for catalytically inactive M subunits.&lt;ref name=pmid6227635/&gt;&lt;ref name=pmid24306210/&gt; PFKM is confirmed to be involved in muscle PFK deficiency with early-onset hyperuricemia.&lt;ref name=pmid6227635/&gt;<br /> <br /> Interestingly, even though PFKM functions to drive glycolysis, its overexpression has been associated with [[type 2 diabetes]] and [[insulin]] resistance in skeletal muscle. One possible explanation suggests that the overexpression is meant to compensate for the [[allosteric inhibition]] of [[PFK1]] as a result of excess [[oxidation]] of free [[fatty acid]]s and accumulation of citrate and [[acetyl-CoA]].&lt;ref name=pmid24306210/&gt;<br /> <br /> == Interactions ==<br /> PFKM has been shown to [[Protein-protein interaction|interact]] with [[ATP6V0A4]].&lt;ref name=pmid12649290&gt;{{cite journal | vauthors = Su Y, Zhou A, Al-Lamki RS, Karet FE | title = The a-subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans | journal = The Journal of Biological Chemistry | volume = 278 | issue = 22 | pages = 20013–8 | date = May 2003 | pmid = 12649290 | doi = 10.1074/jbc.M210077200 }}&lt;/ref&gt;<br /> <br /> == Interactive pathway map ==<br /> {{GlycolysisGluconeogenesis_WP534|highlight=PFKM}}<br /> <br /> == See also ==<br /> *[[PFK]]<br /> *[[PFK-1]]<br /> *[[PFKL]]<br /> *[[PFKP]]<br /> <br /> == References ==<br /> {{reflist|33em}}<br /> <br /> == Further reading ==<br /> {{refbegin|33em}}<br /> * {{cite journal | vauthors = Raben N, Sherman JB | title = Mutations in muscle phosphofructokinase gene | journal = Human Mutation | volume = 6 | issue = 1 | pages = 1–6 | year = 1995 | pmid = 7550225 | doi = 10.1002/humu.1380060102 }}<br /> * {{cite journal | vauthors = Kahn A, Etiemble J, Meienhofer MC, Bovin P | title = Erythrocyte phosphofructokinase deficiency associated with an unstable variant of muscle phosphofructokinase | journal = Clinica Chimica Acta; International Journal of Clinical Chemistry | volume = 61 | issue = 3 | pages = 415–9 | date = Jun 1975 | pmid = 125160 | doi = 10.1016/0009-8981(75)90434-9 }}<br /> * {{cite journal | vauthors = Zhao ZZ, Malencik DA, Anderson SR | title = Protein-induced inactivation and phosphorylation of rabbit muscle phosphofructokinase | journal = Biochemistry | volume = 30 | issue = 8 | pages = 2204–16 | date = Feb 1991 | pmid = 1825608 | doi = 10.1021/bi00222a026 }}<br /> * {{cite journal | vauthors = Yamasaki T, Nakajima H, Kono N, Hotta K, Yamada K, Imai E, Kuwajima M, Noguchi T, Tanaka T, Tarui S | title = Structure of the entire human muscle phosphofructokinase-encoding gene: a two-promoter system | journal = Gene | volume = 104 | issue = 2 | pages = 277–82 | date = Aug 1991 | pmid = 1833270 | doi = 10.1016/0378-1119(91)90262-A }}<br /> * {{cite journal | vauthors = Sharma PM, Reddy GR, Babior BM, McLachlan A | title = Alternative splicing of the transcript encoding the human muscle isoenzyme of phosphofructokinase | journal = The Journal of Biological Chemistry | volume = 265 | issue = 16 | pages = 9006–10 | date = Jun 1990 | pmid = 2140567 | doi = }}<br /> * {{cite journal | vauthors = Nakajima H, Kono N, Yamasaki T, Hotta K, Kawachi M, Kuwajima M, Noguchi T, Tanaka T, Tarui S | title = Genetic defect in muscle phosphofructokinase deficiency. Abnormal splicing of the muscle phosphofructokinase gene due to a point mutation at the 5'-splice site | journal = The Journal of Biological Chemistry | volume = 265 | issue = 16 | pages = 9392–5 | date = Jun 1990 | pmid = 2140573 | doi = }}<br /> * {{cite journal | vauthors = Valdez BC, Chen Z, Sosa MG, Younathan ES, Chang SH | title = Human 6-phosphofructo-1-kinase gene has an additional intron upstream of start codon | journal = Gene | volume = 76 | issue = 1 | pages = 167–9 | date = Mar 1989 | pmid = 2526044 | doi = 10.1016/0378-1119(89)90019-X }}<br /> * {{cite journal | vauthors = Sharma PM, Reddy GR, Vora S, Babior BM, McLachlan A | title = Cloning and expression of a human muscle phosphofructokinase cDNA | journal = Gene | volume = 77 | issue = 1 | pages = 177–83 | date = Apr 1989 | pmid = 2526045 | doi = 10.1016/0378-1119(89)90372-7 }}<br /> * {{cite journal | vauthors = Nakajima H, Noguchi T, Yamasaki T, Kono N, Tanaka T, Tarui S | title = Cloning of human muscle phosphofructokinase cDNA | journal = FEBS Letters | volume = 223 | issue = 1 | pages = 113–6 | date = Oct 1987 | pmid = 2822475 | doi = 10.1016/0014-5793(87)80519-7 }}<br /> * {{cite journal | vauthors = Vora S, Seaman C, Durham S, Piomelli S | title = Isozymes of human phosphofructokinase: identification and subunit structural characterization of a new system | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 77 | issue = 1 | pages = 62–6 | date = Jan 1980 | pmid = 6444721 | pmc = 348208 | doi = 10.1073/pnas.77.1.62 }}<br /> * {{cite journal | vauthors = Kahn A, Weil D, Cottreau D, Dreyfus JC | title = Muscle phosphofructokinase deficiency in man: expression of the defect in blood cells and cultured fibroblasts | journal = Annals of Human Genetics | volume = 45 | issue = Pt 1 | pages = 5–14 | date = Feb 1981 | pmid = 6459054 | doi = 10.1111/j.1469-1809.1981.tb00300.x }}<br /> * {{cite journal | vauthors = Vasconcelos O, Sivakumar K, Dalakas MC, Quezado M, Nagle J, Leon-Monzon M, Dubnick M, Gajdusek DC, Goldfarb LG | title = Nonsense mutation in the phosphofructokinase muscle subunit gene associated with retention of intron 10 in one of the isolated transcripts in Ashkenazi Jewish patients with Tarui disease | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 92 | issue = 22 | pages = 10322–6 | date = Oct 1995 | pmid = 7479776 | pmc = 40788 | doi = 10.1073/pnas.92.22.10322 }}<br /> * {{cite journal | vauthors = Tsujino S, Servidei S, Tonin P, Shanske S, Azan G, DiMauro S | title = Identification of three novel mutations in non-Ashkenazi Italian patients with muscle phosphofructokinase deficiency | journal = American Journal of Human Genetics | volume = 54 | issue = 5 | pages = 812–9 | date = May 1994 | pmid = 7513946 | pmc = 1918246 | doi = }}<br /> * {{cite journal | vauthors = Raben N, Exelbert R, Spiegel R, Sherman JB, Nakajima H, Plotz P, Heinisch J | title = Functional expression of human mutant phosphofructokinase in yeast: genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency | journal = American Journal of Human Genetics | volume = 56 | issue = 1 | pages = 131–41 | date = Jan 1995 | pmid = 7825568 | pmc = 1801305 | doi = }}<br /> * {{cite journal | vauthors = Raben N, Sherman J, Miller F, Mena H, Plotz P | title = A 5' splice junction mutation leading to exon deletion in an Ashkenazic Jewish family with phosphofructokinase deficiency (Tarui disease) | journal = The Journal of Biological Chemistry | volume = 268 | issue = 7 | pages = 4963–7 | date = Mar 1993 | pmid = 8444874 | doi = }}<br /> * {{cite journal | vauthors = Howard TD, Akots G, Bowden DW | title = Physical and genetic mapping of the muscle phosphofructokinase gene (PFKM): reassignment to human chromosome 12q | journal = Genomics | volume = 34 | issue = 1 | pages = 122–7 | date = May 1996 | pmid = 8661033 | doi = 10.1006/geno.1996.0250 }}<br /> * {{cite journal | vauthors = Hamaguchi T, Nakajima H, Noguchi T, Nakagawa C, Kuwajima M, Kono N, Tarui S, Matsuzawa Y | title = Novel missense mutation (W686C) of the phosphofructokinase-M gene in a Japanese patient with a mild form of glycogenosis VII | journal = Human Mutation | volume = 8 | issue = 3 | pages = 273–5 | year = 1997 | pmid = 8889589 | doi = 10.1002/(SICI)1098-1004(1996)8:3&lt;273::AID-HUMU13&gt;3.3.CO;2-4 }}<br /> * {{cite journal | vauthors = Scherer PE, Lisanti MP | title = Association of phosphofructokinase-M with caveolin-3 in differentiated skeletal myotubes. Dynamic regulation by extracellular glucose and intracellular metabolites | journal = The Journal of Biological Chemistry | volume = 272 | issue = 33 | pages = 20698–705 | date = Aug 1997 | pmid = 9252390 | doi = 10.1074/jbc.272.33.20698 }}<br /> * {{cite journal | vauthors = Ristow M, Vorgerd M, Möhlig M, Schatz H, Pfeiffer A | title = Deficiency of phosphofructo-1-kinase/muscle subtype in humans impairs insulin secretion and causes insulin resistance | journal = The Journal of Clinical Investigation | volume = 100 | issue = 11 | pages = 2833–41 | date = Dec 1997 | pmid = 9389749 | pmc = 508489 | doi = 10.1172/JCI119831 }}<br /> {{refend}}<br /> <br /> {{Kinases}}<br /> {{Glycolysis enzymes}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Leber-Phosphofructokinase&diff=193709684 Leber-Phosphofructokinase 2016-05-20T13:12:23Z <p>ProteinBoxBot: Updating to new gene infobox populated via wikidata</p> <hr /> <div>{{Infobox_gene}}<br /> '''6-phosphofructokinase, liver type''' (PFKL) is an [[enzyme]] that in humans is encoded by the ''PFKL'' [[gene]] on chromosome 21.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: PFKL phosphofructokinase, liver| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=5211| accessdate = }}&lt;/ref&gt; This gene encodes the [[liver]] (L) [[protein subunit|subunit]] of an enzyme that [[catalyze]]s the conversion of D-[[fructose 6-phosphate]] to D-[[fructose 1,6-bisphosphate]], which is a key step in [[glucose]] [[metabolism]] ([[glycolysis]]). This enzyme is a [[tetramer]] that may be composed of different subunits encoded by distinct genes in different tissues. [[Alternative splicing]] results in multiple transcript variants. [provided by RefSeq, Mar 2014]&lt;ref name=&quot;entrez&quot; /&gt;<br /> <br /> == Structure ==<br /> <br /> === Gene ===<br /> <br /> The PFKL mRNA sequence includes 55 [[nucleotide]]s at the [[5']] and 515 nucleotides at the [[3']] [[noncoding region]]s, as well as 2,337 nucleotides in the coding region, encoding 779 [[amino acid]]s. This coding region only shares a 68% similarity between PFKL and the muscle-type [[PFKM]].&lt;ref name=pmid2533063&gt;{{cite journal | vauthors = Levanon D, Danciger E, Dafni N, Bernstein Y, Elson A, Moens W, Brandeis M, Groner Y | title = The primary structure of human liver type phosphofructokinase and its comparison with other types of PFK | journal = Dna | volume = 8 | issue = 10 | pages = 733–43 | date = Dec 1989 | pmid = 2533063 | doi=10.1089/dna.1989.8.733}}&lt;/ref&gt;<br /> <br /> === Protein ===<br /> <br /> This 80-kDa protein is one of two subunit types that comprise the five tetrameric PFK isozymes. The liver PFK (PFK-5) contains solely PFKL, while the erythrocyte PFK includes five isozymes composed of different combinations of PFKL and the second subunit type, PFKM.&lt;ref name=pmid6444721&gt;{{cite journal | vauthors = Vora S, Seaman C, Durham S, Piomelli S | title = Isozymes of human phosphofructokinase: identification and subunit structural characterization of a new system | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 77 | issue = 1 | pages = 62–6 | date = Jan 1980 | pmid = 6444721 | doi=10.1073/pnas.77.1.62 | pmc=348208}}&lt;/ref&gt;&lt;ref name=pmid6227635&gt;{{cite journal | vauthors = Vora S, Davidson M, Seaman C, Miranda AF, Noble NA, Tanaka KR, Frenkel EP, Dimauro S | title = Heterogeneity of the molecular lesions in inherited phosphofructokinase deficiency | journal = The Journal of Clinical Investigation | volume = 72 | issue = 6 | pages = 1995–2006 | date = Dec 1983 | pmid = 6227635 | doi = 10.1172/JCI111164 | pmc=437040}}&lt;/ref&gt; The muscle isozyme ([[PFK-1]]) is composed solely of PFKM.&lt;ref name=pmid6444721/&gt;&lt;ref name=pmid6445244&gt;{{cite journal | vauthors = Koster JF, Slee RG, Van Berkel TJ | title = Isoenzymes of human phosphofructokinase | journal = Clinica Chimica Acta; International Journal of Clinical Chemistry | volume = 103 | issue = 2 | pages = 169–73 | date = Apr 1980 | pmid = 6445244 | doi=10.1016/0009-8981(80)90210-7}}&lt;/ref&gt;&lt;ref name=pmid22133655&gt;{{cite journal | vauthors = Musumeci O, Bruno C, Mongini T, Rodolico C, Aguennouz M, Barca E, Amati A, Cassandrini D, Serlenga L, Vita G, Toscano A | title = Clinical features and new molecular findings in muscle phosphofructokinase deficiency (GSD type VII) | journal = Neuromuscular Disorders | volume = 22 | issue = 4 | pages = 325–30 | date = Apr 2012 | pmid = 22133655 | doi = 10.1016/j.nmd.2011.10.022 }}&lt;/ref&gt; These subunits evolved from a common [[prokaryotic]] ancestor via [[gene duplication]] and mutation events. Generally, the [[N-terminal]] of the subunits carries out their catalytic activity while the [[C-terminal]] contains allosteric [[ligand]] binding sites&lt;ref name=pmid22474333&gt;{{cite journal | vauthors = Brüser A, Kirchberger J, Kloos M, Sträter N, Schöneberg T | title = Functional linkage of adenine nucleotide binding sites in mammalian muscle 6-phosphofructokinase | journal = The Journal of Biological Chemistry | volume = 287 | issue = 21 | pages = 17546–53 | date = May 2012 | pmid = 22474333 | doi = 10.1074/jbc.M112.347153 }}&lt;/ref&gt;<br /> <br /> == Function ==<br /> <br /> This gene encodes one of three protein subunits of PFK, which are expressed and combined to form the tetrameric PFK in a tissue-specific manner. As a PFK subunit, PFKL is involved in catalyzing the [[phosphorylation]] of fructose 6-phosphate to fructose 1,6-bisphosphate. This irreversible reaction serves as the major rate-limiting step of glycolysis.&lt;ref name=pmid6444721/&gt;&lt;ref name=pmid22133655/&gt;&lt;ref name=pmid22474333/&gt;&lt;ref name=pmid26194095&gt;{{cite journal | vauthors = Graham DB, Becker CE, Doan A, Goel G, Villablanca EJ, Knights D, Mok A, Ng AC, Doench JG, Root DE, Clish CB, Xavier RJ | title = Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst | journal = Nature Communications | volume = 6 | pages = 7838 | date = 21 July 2015 | pmid = 26194095 | doi = 10.1038/ncomms8838 }}&lt;/ref&gt; Notably, [[Gene knockdown|knockdown]] of ''PFKL'' has been shown to impair glycolysis and promote metabolism via the [[pentose]] phosphate pathway. Moreover, PFKL regulates [[NADPH]] oxidase activity through the pentose phosphate pathway and according to NADPH levels.&lt;ref name=pmid26194095/&gt;<br /> <br /> PFKL has also been detected in [[leukocyte]]s, [[kidney]], and [[brain]].&lt;ref name=pmid6445244/&gt;<br /> <br /> == Clinical significance ==<br /> <br /> As the erythrocyte PFK is composed of both PFKL and PFKM, this [[Homogeneity and heterogeneity#Heterogeneity|heterogeneic]] composition is attributed with the differential PFK activity and organ involvement observed in some inherited PFK deficiency states in which [[myopathy]] or [[hemolysis]] or both can occur, such as [[glycogenosis type VII]] (Tarui disease).&lt;ref name=pmid6444721/&gt;&lt;ref name=pmid6227635/&gt;<br /> <br /> Overexpression of PFKL has been associated with [[Down's syndrome]] (DS) erythrocytes and [[fibroblast]]s and attributed with [[biochemical]] changes in PFK that enhance its glycolytic function. Moreover, the ''PFKL'' gene maps to the triplicated region of chromosome 21 responsible for DS, indicating that this gene, too, has been triplicated.&lt;ref name=pmid1533471&gt;{{cite journal | vauthors = Elson A, Bernstein Y, Degani H, Levanon D, Ben-Hur H, Groner Y | title = Gene dosage and Down's syndrome: metabolic and enzymatic changes in PC12 cells overexpressing transfected human liver-type phosphofructokinase | journal = Somatic Cell and Molecular Genetics | volume = 18 | issue = 2 | pages = 143–61 | date = Mar 1992 | pmid = 1533471 | doi=10.1007/bf01233161}}&lt;/ref&gt;<br /> <br /> == Interactive pathway map ==<br /> {{GlycolysisGluconeogenesis_WP534|highlight=PFKL}}<br /> <br /> == Model organisms ==<br /> {| class=&quot;wikitable sortable collapsible collapsed&quot; border=&quot;1&quot; cellpadding=&quot;2&quot; style=&quot;float: right;&quot; |<br /> |+ ''Pfkl'' knockout mouse phenotype<br /> |-<br /> ! Characteristic!! Phenotype<br /> <br /> |-<br /> | [[Homozygote]] viability || bgcolor=&quot;#C40000&quot;|Abnormal<br /> |-<br /> | [[Recessive]] lethal study || bgcolor=&quot;#C40000&quot;|Abnormal<br /> |-<br /> | Fertility || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | Body weight || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Open Field (animal test)|Anxiety]] || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | Neurological assessment || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | Grip strength || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Hot plate test|Hot plate]] || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Dysmorphology]] || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Indirect calorimetry]] || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Glucose tolerance test]] || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Auditory brainstem response]] || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Radiography]] || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | Body temperature || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | Eye morphology || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Clinical chemistry]] || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Haematology]] || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Peripheral blood lymphocyte]]s || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | [[Micronucleus test]] || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | Heart weight || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | Tail epidermis wholemount || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | Skin Histopathology || bgcolor=&quot;#C40000&quot;|Abnormal<br /> |-<br /> | Brain histopathology || bgcolor=&quot;#488ED3&quot;|Normal<br /> |-<br /> | ''[[Salmonella]]'' infection || bgcolor=&quot;#488ED3&quot;|Normal&lt;ref name=&quot;''Salmonella'' infection&quot;&gt;{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBCL/salmonella-challenge/ |title=''Salmonella'' infection data for Pfkl |publisher=Wellcome Trust Sanger Institute}}&lt;/ref&gt;<br /> |-<br /> | ''[[Citrobacter]]'' infection || bgcolor=&quot;#488ED3&quot;|Normal&lt;ref name=&quot;''Citrobacter'' infection&quot;&gt;{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBCL/citrobacter-challenge/ |title=''Citrobacter'' infection data for Pfkl |publisher=Wellcome Trust Sanger Institute}}&lt;/ref&gt;<br /> |-<br /> | colspan=2; style=&quot;text-align: center;&quot; | All tests and analysis from&lt;ref name=&quot;mgp_reference&quot;&gt;{{cite journal | doi = 10.1111/j.1755-3768.2010.4142.x | title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice | year = 2010 | author = Gerdin AK | journal = Acta Ophthalmologica | volume = 88 | pages = 925–7 }}&lt;/ref&gt;&lt;ref&gt;[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.&lt;/ref&gt;<br /> |}<br /> [[Model organism]]s have been used in the study of PFKL function. A conditional [[knockout mouse]] line, called ''Pfkl&lt;sup&gt;tm1a(EUCOMM)Wtsi&lt;/sup&gt;''&lt;ref name=&quot;allele_ref&quot;&gt;{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Pfkl |title=International Knockout Mouse Consortium}}&lt;/ref&gt;&lt;ref name=&quot;mgi_allele_ref&quot;&gt;{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4432814 |title=Mouse Genome Informatics}}&lt;/ref&gt; was generated as part of the [[International Knockout Mouse Consortium]] program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.&lt;ref name=&quot;pmid21677750&quot;&gt;{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–42 | date = Jun 2011 | pmid = 21677750 | pmc = 3572410 | doi = 10.1038/nature10163 }}&lt;/ref&gt;&lt;ref name=&quot;mouse_library&quot;&gt;{{cite journal | vauthors = Dolgin E | title = Mouse library set to be knockout | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | date = Jun 2011 | pmid = 21677718 | doi = 10.1038/474262a }}&lt;/ref&gt;&lt;ref name=&quot;mouse_for_all_reasons&quot;&gt;{{cite journal | vauthors = Collins FS, Rossant J, Wurst W | title = A mouse for all reasons | journal = Cell | volume = 128 | issue = 1 | pages = 9–13 | date = Jan 2007 | pmid = 17218247 | doi = 10.1016/j.cell.2006.12.018 }}&lt;/ref&gt;<br /> <br /> Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.&lt;ref name=&quot;mgp_reference&quot; /&gt;&lt;ref name=&quot;pmid21722353&quot;&gt;{{cite journal | vauthors = van der Weyden L, White JK, Adams DJ, Logan DW | title = The mouse genetics toolkit: revealing function and mechanism | journal = Genome Biology | volume = 12 | issue = 6 | pages = 224 | year = 2011 | pmid = 21722353 | pmc = 3218837 | doi = 10.1186/gb-2011-12-6-224 }}&lt;/ref&gt; Twenty six tests were carried out on [[mutant]] mice and three significant abnormalities were observed.&lt;ref name=&quot;mgp_reference&quot; /&gt; Few [[homozygous]] [[mutant]] embryos were identified during gestation, and none survived until [[weaning]]. The remaining tests were carried out on [[heterozygous]] mutant adult mice and a [[hair follicle]] degeneration phenotype was observed.&lt;ref name=&quot;mgp_reference&quot; /&gt;<br /> <br /> == See also ==<br /> *[[PFK]]<br /> *[[PFKM]]<br /> *[[PFKP]]<br /> <br /> == References ==<br /> {{reflist|33em}}<br /> <br /> == Further reading ==<br /> {{refbegin|33em}}<br /> * {{cite journal | vauthors = Kahn A, Meienhofer MC, Cottreau D, Lagrange JL, Dreyfus JC | title = Phosphofructokinase (PFK) isozymes in man. I. Studies of adult human tissues | journal = Human Genetics | volume = 48 | issue = 1 | pages = 93–108 | date = Apr 1979 | pmid = 156693 | doi = 10.1007/bf00273280 }}<br /> * {{cite journal | vauthors = Kristensen T, Lopez R, Prydz H | title = An estimate of the sequencing error frequency in the DNA sequence databases | journal = DNA Sequence | volume = 2 | issue = 6 | pages = 343–6 | year = 1992 | pmid = 1446073 | doi = 10.3109/10425179209020815 }}<br /> * {{cite journal | vauthors = Wang D, Fang H, Cantor CR, Smith CL | title = A contiguous Not I restriction map of band q22.3 of human chromosome 21 | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 89 | issue = 8 | pages = 3222–6 | date = Apr 1992 | pmid = 1565613 | pmc = 48838 | doi = 10.1073/pnas.89.8.3222 }}<br /> * {{cite journal | vauthors = Elson A, Levanon D, Brandeis M, Dafni N, Bernstein Y, Danciger E, Groner Y | title = The structure of the human liver-type phosphofructokinase gene | journal = Genomics | volume = 7 | issue = 1 | pages = 47–56 | date = May 1990 | pmid = 2139864 | doi = 10.1016/0888-7543(90)90517-X }}<br /> * {{cite journal | vauthors = Levanon D, Danciger E, Dafni N, Bernstein Y, Elson A, Moens W, Brandeis M, Groner Y | title = The primary structure of human liver type phosphofructokinase and its comparison with other types of PFK | journal = Dna | volume = 8 | issue = 10 | pages = 733–43 | date = Dec 1989 | pmid = 2533063 | doi = 10.1089/dna.1989.8.733 }}<br /> * {{cite journal | vauthors = Van Keuren M, Drabkin H, Hart I, Harker D, Patterson D, Vora S | title = Regional assignment of human liver-type 6-phosphofructokinase to chromosome 21q22.3 by using somatic cell hybrids and a monoclonal anti-L antibody | journal = Human Genetics | volume = 74 | issue = 1 | pages = 34–40 | date = Sep 1986 | pmid = 2944814 | doi = 10.1007/bf00278782 }}<br /> * {{cite journal | vauthors = Levanon D, Danciger E, Dafni N, Groner Y | title = Genomic clones of the human liver-type phosphofructokinase | journal = Biochemical and Biophysical Research Communications | volume = 141 | issue = 1 | pages = 374–80 | date = Nov 1986 | pmid = 2948503 | doi = 10.1016/S0006-291X(86)80379-5 }}<br /> * {{cite journal | vauthors = Vora S, Davidson M, Seaman C, Miranda AF, Noble NA, Tanaka KR, Frenkel EP, Dimauro S | title = Heterogeneity of the molecular lesions in inherited phosphofructokinase deficiency | journal = The Journal of Clinical Investigation | volume = 72 | issue = 6 | pages = 1995–2006 | date = Dec 1983 | pmid = 6227635 | pmc = 437040 | doi = 10.1172/JCI111164 }}<br /> * {{cite journal | vauthors = Vora S, Seaman C, Durham S, Piomelli S | title = Isozymes of human phosphofructokinase: identification and subunit structural characterization of a new system | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 77 | issue = 1 | pages = 62–6 | date = Jan 1980 | pmid = 6444721 | pmc = 348208 | doi = 10.1073/pnas.77.1.62 }}<br /> * {{cite journal | vauthors = Koster JF, Slee RG, Van Berkel TJ | title = Isoenzymes of human phosphofructokinase | journal = Clinica Chimica Acta; International Journal of Clinical Chemistry | volume = 103 | issue = 2 | pages = 169–73 | date = Apr 1980 | pmid = 6445244 | doi = 10.1016/0009-8981(80)90210-7 }}<br /> * {{cite journal | vauthors = Vora S, Francke U | title = Assignment of the human gene for liver-type 6-phosphofructokinase isozyme (PFKL) to chromosome 21 by using somatic cell hybrids and monoclonal anti-L antibody | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 78 | issue = 6 | pages = 3738–42 | date = Jun 1981 | pmid = 6455664 | pmc = 319647 | doi = 10.1073/pnas.78.6.3738 }}<br /> * {{cite journal | vauthors = Zeitschel U, Bigl M, Eschrich K, Bigl V | title = Cellular distribution of 6-phosphofructo-1-kinase isoenzymes in rat brain | journal = Journal of Neurochemistry | volume = 67 | issue = 6 | pages = 2573–80 | date = Dec 1996 | pmid = 8931492 | doi = 10.1046/j.1471-4159.1996.67062573.x }}<br /> * {{cite journal | vauthors = Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J | title = Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides | journal = Nature Biotechnology | volume = 21 | issue = 5 | pages = 566–9 | date = May 2003 | pmid = 12665801 | doi = 10.1038/nbt810 }}<br /> * {{cite journal | vauthors = Zhang C, Dowd DR, Staal A, Gu C, Lian JB, van Wijnen AJ, Stein GS, MacDonald PN | title = Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing | journal = The Journal of Biological Chemistry | volume = 278 | issue = 37 | pages = 35325–36 | date = Sep 2003 | pmid = 12840015 | doi = 10.1074/jbc.M305191200 }}<br /> * {{cite journal | vauthors = Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM | title = Functional proteomics mapping of a human signaling pathway | journal = Genome Research | volume = 14 | issue = 7 | pages = 1324–32 | date = Jul 2004 | pmid = 15231748 | pmc = 442148 | doi = 10.1101/gr.2334104 }}<br /> * {{cite journal | vauthors = Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ | title = Immunoaffinity profiling of tyrosine phosphorylation in cancer cells | journal = Nature Biotechnology | volume = 23 | issue = 1 | pages = 94–101 | date = Jan 2005 | pmid = 15592455 | doi = 10.1038/nbt1046 }}<br /> {{refend}}<br /> <br /> {{Kinases}}<br /> {{Glycolysis enzymes}}<br /> <br /> [[Category:Genes mutated in mice]]</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hexokinase_3&diff=193362167 Hexokinase 3 2016-05-20T05:43:08Z <p>ProteinBoxBot: Updating to new gene infobox populated via wikidata</p> <hr /> <div>{{Infobox_gene}}<br /> <br /> '''Hexokinase 3''' also known as '''HK3''' is an [[enzyme]] which in humans is encoded by the ''HK2'' [[gene]] on chromosome 5.&lt;ref name=&quot;pmid8812439&quot;&gt;{{cite journal | vauthors = Furuta H, Nishi S, Le Beau MM, Fernald AA, Yano H, Bell GI | title = Sequence of human hexokinase III cDNA and assignment of the human hexokinase III gene (HK3) to chromosome band 5q35.2 by fluorescence in situ hybridization | journal = Genomics | volume = 36 | issue = 1 | pages = 206–9 | date = Aug 1996 | pmid = 8812439 | doi = 10.1006/geno.1996.0448 }}&lt;/ref&gt;&lt;ref name=&quot;pmid8941369&quot;&gt;{{cite journal | vauthors = Colosimo A, Calabrese G, Gennarelli M, Ruzzo AM, Sangiuolo F, Magnani M, Palka G, Novelli G, Dallapiccola B | title = Assignment of the hexokinase type 3 gene (HK3) to human chromosome band 5q35.3 by somatic cell hybrids and in situ hybridization | journal = Cytogenetics and Cell Genetics | volume = 74 | issue = 3 | pages = 187–8 | year = 1996 | pmid = 8941369 | doi = 10.1159/000134409 }}&lt;/ref&gt; [[Hexokinase]]s [[phosphorylate]] [[glucose]] to produce [[glucose-6-phosphate]] (G6P), the first step in most glucose [[metabolism]] pathways. This gene encodes hexokinase 3. Similar to hexokinases 1 and 2, this [[allosteric]] enzyme is inhibited by its product glucose-6-phosphate. [provided by RefSeq, Apr 2009]&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HK3 hexokinase 3 (white cell) | url = http://www.ncbi.nlm.nih.gov/gene/3101 | accessdate = }}&lt;/ref&gt;<br /> <br /> ==Structure==<br /> HK3 is one of four highly homologous hexokinase isoforms in mammalian cells.&lt;ref name=pmid12432216&gt;{{cite journal |vauthors=Murakami K, Kanno H, Tancabelic J, Fujii H |title=Gene expression and biological significance of hexokinase in erythroid cells |journal=Acta Haematologica |volume=108 |issue=4 |pages=204–9 |date=2002 |pmid=12432216 |doi=10.1159/000065656}}&lt;/ref&gt;&lt;ref name=pmid23068103&gt;{{cite journal |vauthors=Okatsu K, Iemura S, Koyano F, Go E, Kimura M, Natsume T, Tanaka K, Matsuda N |title=Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase |journal=Biochemical and Biophysical Research Communications |volume=428 |issue=1 |pages=197–202 |date=Nov 2012 |pmid=23068103 |doi=10.1016/j.bbrc.2012.10.041 }}&lt;/ref&gt;&lt;ref name=pmid21072205&gt;{{cite journal |vauthors=Wyatt E, Wu R, Rabeh W, Park HW, Ghanefar M, Ardehali H |title=Regulation and cytoprotective role of hexokinase III |journal=PLOS ONE |volume=5 |issue=11 |pages=e13823 |date=3 November 2010 |pmid=21072205 |doi=10.1371/journal.pone.0013823 }}&lt;/ref&gt;&lt;ref name=pmid4058069&gt;{{cite journal |vauthors=Reid S, Masters C |title=On the developmental properties and tissue interactions of hexokinase |journal=Mechanisms of Ageing and Development |volume=31 |issue=2 |pages=197–212 |date=1985 |pmid=4058069 |doi=10.1016/s0047-6374(85)80030-0}}&lt;/ref&gt; This protein has a molecular weight of 100 kDa and is composed of two highly similar 50-kDa domains at its [[N-terminal|N-]] and [[C-terminal]]s.&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid21072205/&gt;&lt;ref name=pmid4058069/&gt;&lt;ref name=pmid9493266&gt;{{cite journal |vauthors=Aleshin AE, Zeng C, Bourenkov GP, Bartunik HD, Fromm HJ, Honzatko RB |title=The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate |journal=Structure |volume=6 |issue=1 |pages=39–50 |date=Jan 1998 |pmid=9493266 |doi=10.1016/s0969-2126(98)00006-9}}&lt;/ref&gt;&lt;ref name=pmid9056853&gt;{{cite journal |vauthors=Printz RL, Osawa H, Ardehali H, Koch S, Granner DK |title=Hexokinase II gene: structure, regulation and promoter organization |journal=Biochemical Society Transactions |volume=25 |issue=1 |pages=107–12 |date=Feb 1997 |pmid=9056853 |doi=10.1042/bst0250107}}&lt;/ref&gt; This high similarity, along with the and the existence of a 50-kDa hexokinase ([[HK4]]), suggests that the 100-kDa hexokinases originated from a 50-kDa precursor via [[gene duplication]] and tandem ligation.&lt;ref name=pmid21072205/&gt;&lt;ref name=pmid9056853/&gt; Like with [[HK1]], only the C-terminal domain possesses catalytic ability, whereas the N-terminal domain is predicted to contain [[glucose]] and [[G6P]] binding sites, as well as a 32-[[amino acid|residue]] region essential for proper [[protein folding]].&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid21072205/&gt; Moreover, the catalytic activity depends on the interaction between the two terminal domains.&lt;ref name=pmid21072205/&gt; Unlike HK1 and [[HK2]], HK3 lacks a [[mitochondria]]l binding sequence at its N-terminal.&lt;ref name=pmid21072205/&gt;&lt;ref name=pmid9468341&gt;{{cite journal |vauthors=Lowes W, Walker M, Alberti KG, Agius L |title=Hexokinase isoenzymes in normal and cirrhotic human liver: suppression of glucokinase in cirrhosis |journal=Biochimica et Biophysica Acta |volume=1379 |issue=1 |pages=134–42 |date=Jan 1998 |pmid=9468341 |doi=10.1016/s0304-4165(97)00092-5}}&lt;/ref&gt;&lt;ref name=pmid22498738&gt;{{cite journal |vauthors=Federzoni EA, Valk PJ, Torbett BE, Haferlach T, Löwenberg B, Fey MF, Tschan MP |title=PU.1 is linking the glycolytic enzyme HK3 in neutrophil differentiation and survival of APL cells |journal=Blood |volume=119 |issue=21 |pages=4963–70 |date=May 2012 |pmid=22498738 |doi=10.1182/blood-2011-09-378117}}&lt;/ref&gt;<br /> <br /> == Function ==<br /> As a cytoplasmic isoform of hexokinase and a member of the sugar kinase family, HK3 [[catalyze]]s the [[rate-limiting]] and first obligatory step of glucose metabolism, which is the ATP-dependent phosphorylation of glucose to G6P.&lt;ref name=pmid21072205/&gt;&lt;ref name=pmid4058069/&gt;&lt;ref name=pmid25172542&gt;{{cite journal | vauthors = Gao HY, Luo XG, Chen X, Wang JH | title = Identification of key genes affecting disease free survival time of pediatric acute lymphoblastic leukemia based on bioinformatic analysis | journal = Blood Cells, Molecules &amp; Diseases | volume = 54 | issue = 1 | pages = 38–43 | date = Jan 2015 | pmid = 25172542 | doi = 10.1016/j.bcmd.2014.08.002 }}&lt;/ref&gt; Physiological levels of G6P can regulate this process by inhibiting HK3 as [[negative feedback]], though [[inorganic phosphate]] can relieve G6P inhibition.&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid9056853/&gt; Inorganic phosphate can also directly regulate HK3, and the double regulation may better suit its [[anabolic]] functions.&lt;ref name=pmid23068103/&gt; By phosphorylating glucose, HK3 effectively prevents glucose from leaving the cell and, thus, commits glucose to energy metabolism.&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid21072205/&gt;&lt;ref name=pmid9493266/&gt;&lt;ref name=pmid9056853/&gt; Compared to HK1 and HK2, HK3 possesses a higher affinity for glucose and will bind the [[substrate (biochemistry)|substrate]] even at physiological levels, though this binding may be [[attenuate]]d by intracellular ATP.&lt;ref name=pmid23068103/&gt; Uniquely, HK3 can be inhibited by glucose at high concentrations.&lt;ref name=pmid9468341/&gt;&lt;ref name=pmid9540816&gt;{{cite journal | vauthors = Cárdenas ML, Cornish-Bowden A, Ureta T | title = Evolution and regulatory role of the hexokinases | journal = Biochimica et Biophysica Acta | volume = 1401 | issue = 3 | pages = 242–64 | date = Mar 1998 | pmid = 9540816 | doi=10.1016/s0167-4889(97)00150-x}}&lt;/ref&gt; HK3 is also less sensitive to G6P inhibition.&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid9468341/&gt;<br /> <br /> Despite its lack of mitochondrial association, HK3 also functions to protect the cell against [[apoptosis]].&lt;ref name=pmid21072205/&gt;&lt;ref name=pmid25172542/&gt; Overexpression of HK3 has resulted in increased ATP levels, decreased [[reactive oxygen species]] (ROS) production, attenuated [[redox|reduction]] in the mitochondrial [[membrane potential]], and enhanced mitochondrial [[biogenesis]]. Overall, HK3 may promote cell survival by controlling ROS levels and boosting energy production. Currently, only [[hypoxia (medical)|hypoxia]] is known to induce HK3 expression through a [[Hypoxia-inducible factor|HIF]]-dependent pathway. The inducible expression of HK3 indicates its adaptive role in metabolic responses to changes in the cellular environment.&lt;ref name=pmid21072205/&gt;<br /> <br /> In particular, HK3 is ubiquitously expressed in tissues, albeit at relatively low abundance.&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid21072205/&gt;&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid9540816/&gt; Higher abundance levels have been cited in [[lung]], [[kidney]], and [[liver]] tissue.&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid21072205/&gt;&lt;ref name=pmid9468341/&gt; Within cells, HK3 localizes to the [[cytoplasm]] and putatively binds the [[perinuclear envelope]].&lt;ref name=pmid21072205/&gt;&lt;ref name=pmid9468341/&gt;&lt;ref name=pmid22498738/&gt; HK3 is the predominant hexokinase in [[myeloid]] cells, particularly [[granulocyte]]s.&lt;ref name=pmid24584857&gt;{{cite journal | vauthors = Federzoni EA, Humbert M, Torbett BE, Behre G, Fey MF, Tschan MP | title = CEBPA-dependent HK3 and KLF5 expression in primary AML and during AML differentiation | journal = Scientific Reports | volume = 4 | pages = 4261 | date = 3 March 2014 | pmid = 24584857 | doi = 10.1038/srep04261 }}&lt;/ref&gt;<br /> <br /> ==Clinical Significance==<br /> <br /> HK3 is found to be overexpressed in [[malignant]] [[follicle (anatomy)|follicular]] [[thyroid]] nodules. In conjunction with [[cyclin A]] and [[galectin-3]], HK3 could be used as diagnostic biomarker to screen for malignancy in patients.&lt;ref name=pmid25172542/&gt;&lt;ref name=pmid17868400&gt;{{cite journal | vauthors = Hooft L, van der Veldt AA, Hoekstra OS, Boers M, Molthoff CF, van Diest PJ | title = Hexokinase III, cyclin A and galectin-3 are overexpressed in malignant follicular thyroid nodules | journal = Clinical Endocrinology | volume = 68 | issue = 2 | pages = 252–7 | date = Feb 2008 | pmid = 17868400 | doi = 10.1111/j.1365-2265.2007.03031.x }}&lt;/ref&gt; Meanwhile, HK3 was found to be repressed in [[acute myeloid leukemia]] (AML) [[blast cell]]s and [[acute promyelocytic leukemia]] (APL) patients. The [[transcription factor]] [[SPI1|PU.1]] is known to directly activate transcription of the antiapoptotic ''[[BCL2A1]]'' gene or inhibit transcription of the [[p53]] tumor suppressor to promote cell survival, and is proposed to also directly activate ''HK3'' transcription during neutrophil differentiation to support short-term cell survival of mature [[neutrophil]]s.&lt;ref name=pmid22498738/&gt; Regulators repressing HK3 expression in AML include [[PML (gene)|PML]]-[[RARA (gene)|RARA]] and [[CEBPA]].&lt;ref name=pmid22498738/&gt;&lt;ref name=pmid24584857/&gt; Regarding [[acute lymphoblastic leukemia]] (ALL), functional enrichment analysis revealed ''HK3'' as a key gene and suggests that HK3 shares antiapoptotic function with HK1 and HK2.&lt;ref name=pmid25172542/&gt;<br /> <br /> == Interactions ==<br /> <br /> The ''HK3'' promoter is known to interact with [[PU.1]],&lt;ref name=pmid22498738/&gt; [[PML (gene)|PML]]-[[RARA (gene)|RARA]],&lt;ref name=pmid22498738/&gt; and [[CEBPA]].&lt;ref name=pmid24584857/&gt;<br /> <br /> ==Interactive pathway map==<br /> {{GlycolysisGluconeogenesis_WP534|highlight=HK3}}<br /> <br /> == See also ==<br /> *[[Hexokinase]]<br /> *[[HK1]]<br /> *[[HK2]]<br /> *[[Glucokinase]]<br /> <br /> == References ==<br /> {{reflist|33em}}<br /> <br /> == Further reading ==<br /> {{refbegin|33em}}<br /> * {{cite journal | vauthors = Reid S, Masters C | title = On the developmental properties and tissue interactions of hexokinase | journal = Mechanisms of Ageing and Development | volume = 31 | issue = 2 | pages = 197–212 | year = 1985 | pmid = 4058069 | doi = 10.1016/S0047-6374(85)80030-0 }}<br /> * {{cite journal | vauthors = Rijksen G, Staal GE, Beks PJ, Streefkerk M, Akkerman JW | title = Compartmentation of hexokinase in human blood cells. Characterization of soluble and particulate enzymes | journal = Biochimica et Biophysica Acta | volume = 719 | issue = 3 | pages = 431–7 | date = Dec 1982 | pmid = 7150652 | doi = 10.1016/0304-4165(82)90230-6 }}<br /> * {{cite journal | vauthors = Adkins JN, Varnum SM, Auberry KJ, Moore RJ, Angell NH, Smith RD, Springer DL, Pounds JG | title = Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry | journal = Molecular &amp; Cellular Proteomics | volume = 1 | issue = 12 | pages = 947–55 | date = Dec 2002 | pmid = 12543931 | doi = 10.1074/mcp.M200066-MCP200 }}<br /> * {{cite journal | vauthors = Palma F, Agostini D, Mason P, Dachà M, Piccoli G, Biagiarelli B, Fiorani M, Stocchi V | title = Purification and characterization of the carboxyl-domain of human hexokinase type III expressed as fusion protein | journal = Molecular and Cellular Biochemistry | volume = 155 | issue = 1 | pages = 23–9 | date = Feb 1996 | pmid = 8717435 | doi = 10.1007/BF00714329 }}<br /> * {{cite journal | vauthors = Povey S, Corney G, Harris H | title = Genetically determined polymorphism of a form of hexokinase, HK III, found in human leucocytes | journal = Annals of Human Genetics | volume = 38 | issue = 4 | pages = 407–15 | date = May 1975 | pmid = 1190733 | doi = 10.1111/j.1469-1809.1975.tb00630.x }}<br /> * {{cite journal | vauthors = Anderson NL, Anderson NG | title = The human plasma proteome: history, character, and diagnostic prospects | journal = Molecular &amp; Cellular Proteomics | volume = 1 | issue = 11 | pages = 845–67 | date = Nov 2002 | pmid = 12488461 | doi = 10.1074/mcp.R200007-MCP200 }}<br /> * {{cite journal | vauthors = He C, Kraft P, Chen C, Buring JE, Paré G, Hankinson SE, Chanock SJ, Ridker PM, Hunter DJ, Chasman DI | title = Genome-wide association studies identify loci associated with age at menarche and age at natural menopause | journal = Nature Genetics | volume = 41 | issue = 6 | pages = 724–8 | date = Jun 2009 | pmid = 19448621 | pmc = 2888798 | doi = 10.1038/ng.385 }}<br /> * {{cite journal | vauthors = Fonteyne P, Casneuf V, Pauwels P, Van Damme N, Peeters M, Dierckx R, Van de Wiele C | title = Expression of hexokinases and glucose transporters in treated and untreated oesophageal adenocarcinoma | journal = Histology and Histopathology | volume = 24 | issue = 8 | pages = 971–7 | date = Aug 2009 | pmid = 19554504 | doi = }}<br /> * {{cite journal | vauthors = Sui D, Wilson JE | title = Interaction of insulin-like growth factor binding protein-4, Miz-1, leptin, lipocalin-type prostaglandin D synthase, and granulin precursor with the N-terminal half of type III hexokinase | journal = Archives of Biochemistry and Biophysics | volume = 382 | issue = 2 | pages = 262–74 | date = Oct 2000 | pmid = 11068878 | doi = 10.1006/abbi.2000.2019 }}<br /> * {{cite journal | vauthors = Lowes W, Walker M, Alberti KG, Agius L | title = Hexokinase isoenzymes in normal and cirrhotic human liver: suppression of glucokinase in cirrhosis | journal = Biochimica et Biophysica Acta | volume = 1379 | issue = 1 | pages = 134–42 | date = Jan 1998 | pmid = 9468341 | doi = 10.1016/s0304-4165(97)00092-5 }}<br /> * {{cite journal | vauthors = Furuta H, Nishi S, Le Beau MM, Fernald AA, Yano H, Bell GI | title = Sequence of human hexokinase III cDNA and assignment of the human hexokinase III gene (HK3) to chromosome band 5q35.2 by fluorescence in situ hybridization | journal = Genomics | volume = 36 | issue = 1 | pages = 206–9 | date = Aug 1996 | pmid = 8812439 | doi = 10.1006/geno.1996.0448 }}<br /> {{refend}}<br /> <br /> {{NLM content}}<br /> {{Glycolysis enzymes}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hexokinase_2&diff=193361949 Hexokinase 2 2016-05-20T05:43:07Z <p>ProteinBoxBot: Updating to new gene infobox populated via wikidata</p> <hr /> <div>{{About|the enzyme|the dependency injection framework|HK2 DI Kernel}}<br /> {{Infobox_gene}}<br /> <br /> '''Hexokinase 2''' also known as '''HK2''' is an [[enzyme]] which in humans is encoded by the ''HK2'' [[gene]] on chromosome 2.&lt;ref name=&quot;pmid8307259&quot;&gt;{{cite journal | vauthors = Lehto M, Xiang K, Stoffel M, Espinosa R, Groop LC, Le Beau MM, Bell GI | title = Human hexokinase II: localization of the polymorphic gene to chromosome 2 | journal = Diabetologia | volume = 36 | issue = 12 | pages = 1299–302 | date = Dec 1993 | pmid = 8307259 | doi = 10.1007/BF00400809 }}&lt;/ref&gt;&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HK2 hexokinase 2 | url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3099 | accessdate = }}&lt;/ref&gt; [[Hexokinase]]s [[phosphorylate]] [[glucose]] to produce [[glucose-6-phosphate]] (G6P), the first step in most glucose [[metabolism]] pathways. This gene encodes hexokinase 2, the predominant form found in [[skeletal muscle]]. It [[subcellular localization|localizes]] to the [[outer mitochondrial membrane|outer membrane of mitochondria]]. Expression of this gene is [[insulin]]-responsive, and studies in rat suggest that it is involved in the increased rate of [[glycolysis]] seen in rapidly growing [[cancer]] cells. [provided by RefSeq, Apr 2009]&lt;ref name=&quot;entrez&quot;/&gt;<br /> <br /> == Structure ==<br /> <br /> HK2 is one of four highly homologous hexokinase [[isoform]]s in mammalian cells.&lt;ref name=pmid12432216&gt;{{cite journal | vauthors = Murakami K, Kanno H, Tancabelic J, Fujii H | title = Gene expression and biological significance of hexokinase in erythroid cells | journal = Acta Haematologica | volume = 108 | issue = 4 | pages = 204–9 | date = 2002 | pmid = 12432216 | doi=10.1159/000065656}}&lt;/ref&gt;&lt;ref name=pmid23068103&gt;{{cite journal | vauthors = Okatsu K, Iemura S, Koyano F, Go E, Kimura M, Natsume T, Tanaka K, Matsuda N | title = Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase | journal = Biochemical and Biophysical Research Communications | volume = 428 | issue = 1 | pages = 197–202 | date = Nov 2012 | pmid = 23068103 | doi = 10.1016/j.bbrc.2012.10.041 }}&lt;/ref&gt;&lt;ref name=pmid24018046&gt;{{cite journal | vauthors = Schindler A, Foley E | title = Hexokinase 1 blocks apoptotic signals at the mitochondria | journal = Cellular Signalling | volume = 25 | issue = 12 | pages = 2685–92 | date = Dec 2013 | pmid = 24018046 | doi = 10.1016/j.cellsig.2013.08.035 }}&lt;/ref&gt;&lt;ref name=pmid9056853&gt;{{cite journal | vauthors = Printz RL, Osawa H, Ardehali H, Koch S, Granner DK | title = Hexokinase II gene: structure, regulation and promoter organization | journal = Biochemical Society Transactions | volume = 25 | issue = 1 | pages = 107–12 | date = Feb 1997 | pmid = 9056853 | doi=10.1042/bst0250107}}&lt;/ref&gt;&lt;ref name=pmid19558793&gt;{{cite journal | vauthors = Ahn KJ, Kim J, Yun M, Park JH, Lee JD | title = Enzymatic properties of the N- and C-terminal halves of human hexokinase II | journal = BMB Reports | volume = 42 | issue = 6 | pages = 350–5 | date = Jun 2009 | pmid = 19558793 | doi=10.5483/bmbrep.2009.42.6.350}}&lt;/ref&gt;<br /> <br /> ===Gene===<br /> <br /> The ''HK2'' gene spans approximately 50 [[kilobase|kb]] and consists of 18 [[exon]]s. There is also an ''HK2'' [[pseudogene]] integrated into a long interspersed nuclear repetitive DNA element located on the X chromosome. Though its [[DNA]] sequence is similar to the cDNA product of the actual ''HK2'' [[mRNA]] transcript, it lacks an [[open reading frame]] for gene expression.&lt;ref name=pmid9056853/&gt;<br /> <br /> ===Protein===<br /> This gene encodes a 100-kDa, 917-[[amino acid|residue]] [[enzyme]] with highly similar [[N-terminal|N-]] and [[C-terminal]] domains that each form half of the protein.&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid9493266&gt;{{cite journal | vauthors = Aleshin AE, Zeng C, Bourenkov GP, Bartunik HD, Fromm HJ, Honzatko RB | title = The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate | journal = Structure | volume = 6 | issue = 1 | pages = 39–50 | date = Jan 1998 | pmid = 9493266 | doi=10.1016/s0969-2126(98)00006-9}}&lt;/ref&gt; This high similarity, along with the existence of a 50-kDa hexokinase ([[HK4]]), suggests that the 100-kDa hexokinases originated from a 50-kDa precursor via [[gene duplication]] and tandem ligation.&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid19558793/&gt; Both N- and C-terminal domains possess [[catalytic]] ability and can be inhibited by G6P, though the C-terminal domain demonstrates lower [[affinity (pharmacology)|affinity]] for [[Adenosine triphosphate|ATP]] and is only inhibited at higher concentrations of G6P.&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid9056853/&gt; Despite there being two binding sites for glucose, it is proposed that glucose binding at one site induces a conformational change which prevents a second glucose from binding the other site.&lt;ref name=pmid9540816&gt;{{cite journal|last1=Cárdenas|first1=ML|last2=Cornish-Bowden|first2=A|last3=Ureta|first3=T|title=Evolution and regulatory role of the hexokinases.|journal=Biochimica et Biophysica Acta|date=5 March 1998|volume=1401|issue=3|pages=242–64|pmid=9540816|doi=10.1016/s0167-4889(97)00150-x}}&lt;/ref&gt; Meanwhile, the first 12 amino acids of the highly [[hydrophobic]] N-terminal serve to bind the enzyme to the [[mitochondria]], while the first 18 amino acids contribute to the enzyme’s stability.&lt;ref name=pmid24018046/&gt;&lt;ref name=pmid19558793/&gt;<br /> <br /> == Function ==<br /> As an isoform of hexokinase and a member of the sugar kinase family, HK2 [[catalyze]]s the [[rate-limiting]] and first obligatory step of glucose metabolism, which is the ATP-dependent phosphorylation of glucose to G6P.&lt;ref name=pmid19558793/&gt; Physiological levels of G6P can regulate this process by inhibiting HK2 as [[negative feedback]], though [[inorganic phosphate]] (P&lt;sub&gt;i&lt;/sub&gt;) can relieve G6P inhibition.&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid19558793/&gt; P&lt;sub&gt;i&lt;/sub&gt; can also directly regulate HK2, and the double regulation may better suit its [[anabolic]] functions.&lt;ref name=pmid23068103/&gt; By phosphorylating glucose, HK2 effectively prevents glucose from leaving the cell and, thus, commits glucose to energy metabolism.&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid9493266/&gt; Moreover, its localization and attachment to the OMM promotes the coupling of glycolysis to mitochondrial [[oxidative phosphorylation]], which greatly enhances ATP production to meet the cell’s energy demands.&lt;ref name=pmid24560881&gt;{{cite journal | vauthors = Shan D, Mount D, Moore S, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE | title = Abnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia | journal = Schizophrenia Research | volume = 154 | issue = 1-3 | pages = 1–13 | date = Apr 2014 | pmid = 24560881 | doi = 10.1016/j.schres.2014.01.028 }}&lt;/ref&gt;&lt;ref name=pmid19723875&gt;{{cite journal | vauthors = Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ, Davis S, Stark AM, Merino MJ, Kurek R, Mehdorn HM, Davis G, Steinberg SM, Meltzer PS, Aldape K, Steeg PS | title = Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis | journal = Molecular Cancer Research | volume = 7 | issue = 9 | pages = 1438–45 | date = Sep 2009 | pmid = 19723875 | doi = 10.1158/1541-7786.MCR-09-0234 | pmc=2746883}}&lt;/ref&gt; Specifically, HK2 binds [[VDAC]] to trigger opening of the channel and release mitochondrial ATP to further fuel the glycolytic process.&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid19723875/&gt;<br /> <br /> Another critical function for OMM-bound HK2 is mediation of cell survival.&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid24018046/&gt; Activation of [[Akt]] [[kinase]] maintains HK2-VDAC coupling, which subsequently prevents [[cytochrome c]] release and apoptosis, though the exact mechanism remains to be confirmed.&lt;ref name=pmid23068103/&gt; One model proposes that HK2 competes with the pro-apoptotic proteins [[Bcl-2-associated X protein|BAX]] to bind VDAC, and in the absence of HK2, BAX induces [[cytochrome c]] release.&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid19723875/&gt; In fact, there is evidence that HK2 restricts [[Bcl-2-associated X protein|BAX]] and [[Bcl-2 homologous antagonist killer|BAK]] oligomerization and binding to the OMM. In a similar mechanism, the pro-apoptotic [[creatine kinase]] binds and opens VDAC in the absence of HK2.&lt;ref name=pmid23068103/&gt; An alternative model proposes the opposite, that HK2 regulates binding of the anti-apoptotic protein [[Bcl-Xl]] to VDAC.&lt;ref name=pmid19723875/&gt;<br /> <br /> In particular, HK2 is ubiquitously expressed in tissues, though it is majorly found in [[muscle]] and [[adipose]] tissue.&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid19723875/&gt; In [[cardiac]] and [[skeletal muscle]], HK2 can be found bound to both the mitochondrial and [[sarcoplasm]]ic membrane.&lt;ref name=pmid4058069&gt;{{cite journal|last1=Reid|first1=S|last2=Masters|first2=C|title=On the developmental properties and tissue interactions of hexokinase.|journal=Mechanisms of ageing and development|date=1985|volume=31|issue=2|pages=197–212|pmid=4058069|doi=10.1016/s0047-6374(85)80030-0}}&lt;/ref&gt; HK2 gene expression is regulated by a phosphatidylinositol 3-kinaselp70 S6 protein [[kinase]]-dependent pathway and can be induced by factors such as [[insulin]], [[hypoxia (medical)|hypoxia]], cold temperatures, and exercise.&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid21072205&gt;{{cite journal|last1=Wyatt|first1=E|last2=Wu|first2=R|last3=Rabeh|first3=W|last4=Park|first4=HW|last5=Ghanefar|first5=M|last6=Ardehali|first6=H|title=Regulation and cytoprotective role of hexokinase III.|journal=PLOS ONE|date=3 November 2010|volume=5|issue=11|pages=e13823|pmid=21072205|doi=10.1371/journal.pone.0013823}}&lt;/ref&gt; Its inducible expression indicates its adaptive role in metabolic responses to changes in the cellular environment.&lt;ref name=pmid21072205/&gt;<br /> <br /> == Clinical significance ==<br /> <br /> === Cancer ===<br /> <br /> HK2 is highly expressed in several [[cancer]]s, including [[breast cancer]] and [[colon cancer]].&lt;ref name=pmid24018046/&gt;&lt;ref name=pmid19723875/&gt;&lt;ref name=pmid19579598&gt;{{cite journal | vauthors = Peng Q, Zhou J, Zhou Q, Pan F, Zhong D, Liang H | title = Silencing hexokinase II gene sensitizes human colon cancer cells to 5-fluorouracil | journal = Hepato-Gastroenterology | volume = 56 | issue = 90 | pages = 355–60 | date = 2009 | pmid = 19579598 }}&lt;/ref&gt; Its role in coupling ATP from [[oxidative phosphorylation]] to the rate-limiting step of glycolysis may help drive the [[tumor]] cells’ growth.&lt;ref name=pmid19723875/&gt; Notably, inhibition of HK2 has demonstrably improved the effectiveness of anticancer drugs.,&lt;ref name=pmid19579598/&gt; Thus, HK2 stands as a promising therapeutic target, though considering its ubiquitous expression and crucial role in energy metabolism, a reduction rather than complete inhibition of its activity should be pursued.&lt;ref name=pmid19723875/&gt;&lt;ref name=pmid19579598/&gt;<br /> <br /> === Non-insulin-dependent diabetes mellitus ===<br /> <br /> A study on [[non-insulin-dependent diabetes mellitus]] (NIDDM) revealed low basal G6P levels in NIDDM patients that failed to increase with the addition of insulin. One possible cause is decreased phosphorylation of glucose due to a defect in HK2, which was confirmed in further experiments. However, the study could not establish any links between NIDDM and mutations in the ''HK2'' gene, indicating that the defect may lie in HK2 regulation.&lt;ref name=pmid9056853/&gt;<br /> <br /> == Interactions ==<br /> <br /> HK2 is known to [[protein-protein interaction|interact]] with:<br /> *[[VDAC]].&lt;ref name=pmid23068103/&gt;<br /> <br /> == Interactive pathway map ==<br /> {{GlycolysisGluconeogenesis_WP534|highlight=HK2}}<br /> <br /> ==See also==<br /> {{Portal|Mitochondria}}<br /> *[[Hexokinase]]<br /> *[[HK1]]<br /> *[[HK3]]<br /> *[[Glucokinase]]<br /> <br /> == References ==<br /> {{Reflist|33em}}<br /> <br /> == Further reading ==<br /> {{refbegin|33em}}<br /> * {{cite journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173–8 | date = Oct 2005 | pmid = 16189514 | doi = 10.1038/nature04209 }}<br /> * {{cite journal | vauthors = Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y, Yanagihara K, Li M, Tanaka F, Wada H, Manabe T, Saga T | title = [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung | journal = Neoplasia | volume = 7 | issue = 4 | pages = 369–79 | date = Apr 2005 | pmid = 15967114 | pmc = 1501150 | doi = 10.1593/neo.04577 }}<br /> * {{cite journal | vauthors = Machida K, Ohta Y, Osada H | title = Suppression of apoptosis by cyclophilin D via stabilization of hexokinase II mitochondrial binding in cancer cells | journal = The Journal of Biological Chemistry | volume = 281 | issue = 20 | pages = 14314–20 | date = May 2006 | pmid = 16551620 | doi = 10.1074/jbc.M513297200 }}<br /> * {{cite journal | vauthors = Ahn KJ, Kim J, Yun M, Park JH, Lee JD | title = Enzymatic properties of the N- and C-terminal halves of human hexokinase II | journal = BMB Reports | volume = 42 | issue = 6 | pages = 350–5 | date = Jun 2009 | pmid = 19558793 | doi = 10.5483/BMBRep.2009.42.6.350 }}<br /> * {{cite journal | vauthors = Printz RL, Osawa H, Ardehali H, Koch S, Granner DK | title = Hexokinase II gene: structure, regulation and promoter organization | journal = Biochemical Society Transactions | volume = 25 | issue = 1 | pages = 107–12 | date = Feb 1997 | pmid = 9056853 | doi = 10.1042/bst0250107}}<br /> * {{cite journal | vauthors = Peng Q, Zhou J, Zhou Q, Pan F, Zhong D, Liang H | title = Silencing hexokinase II gene sensitizes human colon cancer cells to 5-fluorouracil | journal = Hepato-Gastroenterology | volume = 56 | issue = 90 | pages = 355–60 | year = 2009 | pmid = 19579598 | doi = }}<br /> * {{cite journal | vauthors = Shulga N, Wilson-Smith R, Pastorino JG | title = Hexokinase II detachment from the mitochondria potentiates cisplatin induced cytotoxicity through a caspase-2 dependent mechanism | journal = Cell Cycle | volume = 8 | issue = 20 | pages = 3355–64 | date = Oct 2009 | pmid = 19770592 | pmc = 2829766 | doi = 10.4161/cc.8.20.9853 }}<br /> * {{cite journal | vauthors = He HC, Bi XC, Zheng ZW, Dai QS, Han ZD, Liang YX, Ye YK, Zeng GH, Zhu G, Zhong WD | title = Real-time quantitative RT-PCR assessment of PIM-1 and hK2 mRNA expression in benign prostate hyperplasia and prostate cancer | journal = Medical Oncology | volume = 26 | issue = 3 | pages = 303–8 | year = 2009 | pmid = 19003546 | doi = 10.1007/s12032-008-9120-9 }}<br /> * {{cite journal | vauthors = Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M, Zoghbi HY | title = A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration | journal = Cell | volume = 125 | issue = 4 | pages = 801–14 | date = May 2006 | pmid = 16713569 | doi = 10.1016/j.cell.2006.03.032 }}<br /> * {{cite journal | vauthors = Sakai N, Terami H, Suzuki S, Haga M, Nomoto K, Tsuchida N, Morohashi K, Saito N, Asada M, Hashimoto M, Harada D, Asahara H, Ishikawa T, Shimada F, Sakurada K | title = Identification of NR5A1 (SF-1/AD4BP) gene expression modulators by large-scale gain and loss of function studies | journal = The Journal of Endocrinology | volume = 198 | issue = 3 | pages = 489–97 | date = Sep 2008 | pmid = 18579725 | doi = 10.1677/JOE-08-0027 }}<br /> * {{cite journal | vauthors = Foster LJ, Rudich A, Talior I, Patel N, Huang X, Furtado LM, Bilan PJ, Mann M, Klip A | title = Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell culture (SILAC) | journal = Journal of Proteome Research | volume = 5 | issue = 1 | pages = 64–75 | date = Jan 2006 | pmid = 16396496 | doi = 10.1021/pr0502626 }}<br /> * {{cite journal | vauthors = Arzoine L, Zilberberg N, Ben-Romano R, Shoshan-Barmatz V | title = Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity | journal = The Journal of Biological Chemistry | volume = 284 | issue = 6 | pages = 3946–55 | date = Feb 2009 | pmid = 19049977 | doi = 10.1074/jbc.M803614200 }}<br /> * {{cite journal | vauthors = Gimenez-Cassina A, Lim F, Cerrato T, Palomo GM, Diaz-Nido J | title = Mitochondrial hexokinase II promotes neuronal survival and acts downstream of glycogen synthase kinase-3 | journal = The Journal of Biological Chemistry | volume = 284 | issue = 5 | pages = 3001–11 | date = Jan 2009 | pmid = 19033437 | doi = 10.1074/jbc.M808698200 }}<br /> * {{cite journal | vauthors = Peng Q, Zhou Q, Zhou J, Zhong D, Pan F, Liang H | title = Stable RNA interference of hexokinase II gene inhibits human colon cancer LoVo cell growth in vitro and in vivo | journal = Cancer Biology &amp; Therapy | volume = 7 | issue = 7 | pages = 1128–35 | date = Jul 2008 | pmid = 18535403 | doi = 10.4161/cbt.7.7.6199 }}<br /> * {{cite journal | vauthors = Rodríguez-Enríquez S, Marín-Hernández A, Gallardo-Pérez JC, Moreno-Sánchez R | title = Kinetics of transport and phosphorylation of glucose in cancer cells | journal = Journal of Cellular Physiology | volume = 221 | issue = 3 | pages = 552–9 | date = Dec 2009 | pmid = 19681047 | doi = 10.1002/jcp.21885 }}<br /> * {{cite journal | vauthors = Kim JW, Gao P, Liu YC, Semenza GL, Dang CV | title = Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1 | journal = Molecular and Cellular Biology | volume = 27 | issue = 21 | pages = 7381–93 | date = Nov 2007 | pmid = 17785433 | pmc = 2169056 | doi = 10.1128/MCB.00440-07 }}<br /> * {{cite journal | vauthors = Fonteyne P, Casneuf V, Pauwels P, Van Damme N, Peeters M, Dierckx R, Van de Wiele C | title = Expression of hexokinases and glucose transporters in treated and untreated oesophageal adenocarcinoma | journal = Histology and Histopathology | volume = 24 | issue = 8 | pages = 971–7 | date = Aug 2009 | pmid = 19554504 | doi = }}<br /> * {{cite journal | vauthors = Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ, Davis S, Stark AM, Merino MJ, Kurek R, Mehdorn HM, Davis G, Steinberg SM, Meltzer PS, Aldape K, Steeg PS | title = Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis | journal = Molecular Cancer Research | volume = 7 | issue = 9 | pages = 1438–45 | date = Sep 2009 | pmid = 19723875 | pmc = 2746883 | doi = 10.1158/1541-7786.MCR-09-0234 }}<br /> * {{cite journal | vauthors = Peng QP, Zhou JM, Zhou Q, Pan F, Zhong DP, Liang HJ | title = Downregulation of the hexokinase II gene sensitizes human colon cancer cells to 5-fluorouracil | journal = Chemotherapy | volume = 54 | issue = 5 | pages = 357–63 | year = 2008 | pmid = 18772588 | doi = 10.1159/000153655 }}<br /> * {{cite journal | vauthors = Paudyal B, Oriuchi N, Paudyal P, Higuchi T, Nakajima T, Endo K | title = Expression of glucose transporters and hexokinase II in cholangiocellular carcinoma compared using [18F]-2-fluro-2-deoxy-D-glucose positron emission tomography | journal = Cancer Science | volume = 99 | issue = 2 | pages = 260–6 | date = Feb 2008 | pmid = 18271924 | doi = 10.1111/j.1349-7006.2007.00683.x }}<br /> {{refend}}<br /> <br /> {{NLM content}}<br /> <br /> {{Glycolysis enzymes}}<br /> {{Mitochondrial enzymes}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hexokinase_1&diff=193332682 Hexokinase 1 2016-05-20T05:43:04Z <p>ProteinBoxBot: Updating to new gene infobox populated via wikidata</p> <hr /> <div>{{Infobox_gene}}<br /> '''Hexokinase-1''' (HK1) is an [[enzyme]] that in humans is encoded by the ''HK1'' [[gene]] on chromosome 10. [[Hexokinase]]s [[phosphorylate]] [[glucose]] to produce [[glucose-6-phosphate]] (G6P), the first step in most glucose metabolism pathways. This gene encodes a ubiquitous form of hexokinase which localizes to the [[outer mitochondrial membrane|outer membrane of mitochondria]]. Mutations in this gene have been associated with [[hemolytic anemia]] due to hexokinase deficiency. [[Alternative splicing]] of this gene results in five transcript variants which encode different [[isoform]]s, some of which are tissue-specific. Each isoform has a distinct [[N-terminal|N-terminus]]; the remainder of the protein is identical among all the isoforms. A sixth transcript variant has been described, but due to the presence of several [[stop codon]]s, it is not thought to encode a protein. [provided by RefSeq, Apr 2009]&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HK1 hexokinase 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3098| accessdate = }}&lt;/ref&gt; <br /> <br /> == Structure ==<br /> <br /> HK1 is one of four highly homologous hexokinase isoforms in mammalian cells.&lt;ref name=pmid12432216&gt;{{cite journal | vauthors = Murakami K, Kanno H, Tancabelic J, Fujii H | title = Gene expression and biological significance of hexokinase in erythroid cells | journal = Acta Haematologica | volume = 108 | issue = 4 | pages = 204–9 | date = 2002 | pmid = 12432216 | doi = 10.1159/000065656 }}&lt;/ref&gt;&lt;ref name=pmid23068103&gt;{{cite journal | vauthors = Okatsu K, Iemura S, Koyano F, Go E, Kimura M, Natsume T, Tanaka K, Matsuda N | title = Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase | journal = Biochemical and Biophysical Research Communications | volume = 428 | issue = 1 | pages = 197–202 | date = Nov 2012 | pmid = 23068103 | doi = 10.1016/j.bbrc.2012.10.041 }}&lt;/ref&gt;<br /> <br /> === Gene ===<br /> <br /> The ''HK1'' gene spans approximately 131 [[kilobase|kb]] and consists of 25 [[exon]]s. [[Alternative splicing]] of its 5’ exons produces different transcripts in different cell types: exons 1-5 and exon 8 (exons T1-6) are testis-specific exons; exon 6, located approximately 15 kb downstream of the testis-specific exons, is the [[erythroid]]-specific exon (exon R); and exon 7, located approximately 2.85 kb downstream of exon R, is the first 5’ exon for the ubiquitously expressed HK1 isoform. Moreover, exon 7 encodes the porin-binding domain (PBD) conserved in mammalian ''HK1'' genes. Meanwhile, the remaining 17 exons are shared among all HK1 isoforms. <br /> <br /> In addition to exon R, a stretch of the proximal [[promoter (genetics)|promoter]] that contains a GATA element, an SP1 site, CCAAT, and an Ets-binding motif is necessary for expression of HK-R in erythroid cells.&lt;ref name=pmid12432216/&gt;<br /> <br /> === Protein ===<br /> <br /> This gene encodes a 100 kDa [[homodimer]] with a regulatory [[N-terminal]] domain (1-475), [[catalytic]] [[C-terminal]] domain (residues 476-917), and an [[alpha-helix]] connecting its two subunits.&lt;ref name=pmid12432216/&gt;&lt;ref name=pmid9493266&gt;{{cite journal | vauthors = Aleshin AE, Zeng C, Bourenkov GP, Bartunik HD, Fromm HJ, Honzatko RB | title = The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate | journal = Structure | volume = 6 | issue = 1 | pages = 39–50 | date = Jan 1998 | pmid = 9493266 | doi=10.1016/s0969-2126(98)00006-9}}&lt;/ref&gt;&lt;ref name=pmid10686099&gt;{{cite journal | vauthors = Aleshin AE, Kirby C, Liu X, Bourenkov GP, Bartunik HD, Fromm HJ, Honzatko RB | title = Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation | journal = Journal of Molecular Biology | volume = 296 | issue = 4 | pages = 1001–15 | date = Mar 2000 | pmid = 10686099 | doi = 10.1006/jmbi.1999.3494 }}&lt;/ref&gt;&lt;ref name=pmid16892082&gt;{{cite journal | vauthors = Robey RB, Hay N | title = Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt | journal = Oncogene | volume = 25 | issue = 34 | pages = 4683–96 | date = Aug 2006 | pmid = 16892082 | doi = 10.1038/sj.onc.1209595 }}&lt;/ref&gt; Both terminal domains are composed of a large subdomain and a small subdomain. The flexible region of the C-terminal large subdomain ([[amino acid|residues]] 766–810) can adopt various positions and is proposed to interact with the [[base]]{{dn|date=October 2015}} of ATP. Moreover, glucose and G6P bind in close proximity at the N- and C-terminal domains and stabilize a common conformational state of the C-terminal domain.&lt;ref name=pmid9493266/&gt;&lt;ref name=pmid10686099/&gt; According to one model, G6P acts as an [[allosteric]] inhibitor which binds the N-terminal domain to stabilize its closed conformation, which then stabilizes a conformation of the C-terminal flexible subdomain that blocks ATP. A second model posits that G6P acts as an active inhibitor that stabilizes the closed conformation and competes with ATP for the C-terminal binding site.&lt;ref name=pmid9493266/&gt; Results from several studies suggest that the C-terminal is capable of both catalytic and regulatory action.&lt;ref name=pmid9540816&gt;{{cite journal|last1=Cárdenas|first1=ML|last2=Cornish-Bowden|first2=A|last3=Ureta|first3=T|title=Evolution and regulatory role of the hexokinases.|journal=Biochimica et Biophysica Acta|date=5 March 1998|volume=1401|issue=3|pages=242–64|pmid=9540816|doi=10.1016/s0167-4889(97)00150-x}}&lt;/ref&gt; Meanwhile, the hydrophobic N-terminal lacks enzymatic activity by itself but contains the G6P regulatory site and the PBD, which is responsible for the protein’s stability and binding to the [[outer mitochondrial membrane]] (OMM).&lt;ref name=pmid12432216/&gt;&lt;ref name=pmid9056853&gt;{{cite journal | vauthors = Printz RL, Osawa H, Ardehali H, Koch S, Granner DK | title = Hexokinase II gene: structure, regulation and promoter organization | journal = Biochemical Society Transactions | volume = 25 | issue = 1 | pages = 107–12 | date = Feb 1997 | pmid = 9056853 | doi=10.1042/bst0250107}}&lt;/ref&gt;&lt;ref name=pmid16892082/&gt;&lt;ref name=pmid24018046&gt;{{cite journal | vauthors = Schindler A, Foley E | title = Hexokinase 1 blocks apoptotic signals at the mitochondria | journal = Cellular Signalling | volume = 25 | issue = 12 | pages = 2685–92 | date = Dec 2013 | pmid = 24018046 | doi = 10.1016/j.cellsig.2013.08.035 }}&lt;/ref&gt; <br /> <br /> == Function ==<br /> <br /> As As one of two mitochondrial isoforms of hexokinase and a member of the sugar kinase family, HK1 [[catalyze]]s the [[rate-limiting]] and first obligatory step of glucose metabolism, which is the ATP-dependent phosphorylation of glucose to G6P.&lt;ref name=pmid9493266/&gt;&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid16892082/&gt;&lt;ref name=pmid22018957&gt;{{cite journal | vauthors = Regenold WT, Pratt M, Nekkalapu S, Shapiro PS, Kristian T, Fiskum G | title = Mitochondrial detachment of hexokinase 1 in mood and psychotic disorders: implications for brain energy metabolism and neurotrophic signaling | journal = Journal of Psychiatric Research | volume = 46 | issue = 1 | pages = 95–104 | date = Jan 2012 | pmid = 22018957 | doi = 10.1016/j.jpsychires.2011.09.018 }}&lt;/ref&gt; Physiological levels of G6P can regulate this process by inhibiting HK1 as [[negative feedback]], though [[inorganic phosphate]] (P&lt;sub&gt;i&lt;/sub&gt;) can relieve G6P inhibition.&lt;ref name=pmid9493266/&gt;&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid16892082/&gt; However, unlike [[HK2]] and [[HK3]], HK1 itself is not directly regulated by P&lt;sub&gt;i&lt;/sub&gt;, which better suits its ubiquitous [[catabolic]] role.&lt;ref name=pmid23068103/&gt; By phosphorylating glucose, HK1 effectively prevents glucose from leaving the cell and, thus, commits glucose to energy metabolism.&lt;ref name=pmid9493266/&gt;&lt;ref name=pmid24018046/&gt;&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid16892082/&gt; Moreover, its localization and attachment to the OMM promotes the coupling of glycolysis to mitochondrial [[oxidative phosphorylation]], which greatly enhances ATP production by direct recycling of mitochondrial ATP/ADP to meet the cell’s energy demands.&lt;ref name=pmid22018957/&gt;&lt;ref name=pmid16892082/&gt;&lt;ref name=pmid24560881&gt;{{cite journal | vauthors = Shan D, Mount D, Moore S, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE | title = Abnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia | journal = Schizophrenia Research | volume = 154 | issue = 1-3 | pages = 1–13 | date = Apr 2014 | pmid = 24560881 | doi = 10.1016/j.schres.2014.01.028 }}&lt;/ref&gt; Specifically, OMM-bound HK1 binds [[VDAC1]] to trigger opening of the [[mitochondrial permeability transition pore]] and release mitochondrial ATP to further fuel the glycolytic process.&lt;ref name=pmid16892082/&gt;&lt;ref name=pmid23068103/&gt; <br /> <br /> Another critical function for OMM-bound HK1 is cell survival and protection against [[oxidative damage]].&lt;ref name=pmid22018957/&gt;&lt;ref name=pmid23068103/&gt; Activation of [[Akt]] [[kinase]] is mediated by HK1-VDAC1 coupling as part of the growth factor-mediated phosphatidyl inositol 3-kinase (PI3)/Akt cell survival intracellular signaling pathway, thus preventing [[cytochrome c]] release and subsequent apoptosis.&lt;ref name=pmid22018957/&gt;&lt;ref name=pmid12432216/&gt;&lt;ref name=pmid16892082/&gt;&lt;ref name=pmid23068103/&gt; In fact, there is evidence that VDAC binding by the anti-apoptotic HK1 and by the pro-apoptotic [[creatine kinase]] are mutually exclusive, indicating that the absence of HK1 allows creatine kinase to bind and open VDAC.&lt;ref name=pmid23068103/&gt; Furthermore, HK1 has demonstrated anti-[[apoptotic]] activity by antagonizing [[Bcl-2]] proteins located at the OMM, which then inhibits [[TNF]]-induced apoptosis.&lt;ref name=pmid12432216/&gt;&lt;ref name=pmid24018046/&gt;<br /> <br /> In the [[prefrontal cortex]], HK1 putatively forms a protein complex with [[EAAT2]], [[Na+/K+ ATPase]], and [[aconitase]], which functions to remove [[glutamate]] from the perisynaptic space and maintain low basal levels in the [[synaptic cleft]].&lt;ref name=pmid24560881/&gt;<br /> <br /> In particular, HK1 is the most ubiquitously expressed isoform out of the four hexokinases, and constitutively expressed expressed in most tissues, though it is majorly found in [[brain]], [[kidney]], and [[red blood cell]]s (RBCs).&lt;ref name=pmid12432216/&gt;&lt;ref name=pmid9493266/&gt;&lt;ref name=pmid24018046/&gt;&lt;ref name=pmid23068103/&gt;&lt;ref name=pmid24560881/&gt;&lt;ref name=pmid16892082/&gt;&lt;ref name=pmid4058069&gt;{{cite journal|last1=Reid|first1=S|last2=Masters|first2=C|title=On the developmental properties and tissue interactions of hexokinase.|journal=Mechanisms of ageing and development|date=1985|volume=31|issue=2|pages=197–212|pmid=4058069|doi=10.1016/s0047-6374(85)80030-0}}&lt;/ref&gt; Its high abundance in the [[retina]], specifically the photoreceptor inner segment, outer plexiform layer, inner nuclear layer, inner plexiform layer, and ganglion cell layer, attests to its crucial metabolic purpose.&lt;ref name=pmid25316723&gt;{{cite journal | vauthors = Wang F, Wang Y, Zhang B, Zhao L, Lyubasyuk V, Wang K, Xu M, Li Y, Wu F, Wen C, Bernstein PS, Lin D, Zhu S, Wang H, Zhang K, Chen R | title = A missense mutation in HK1 leads to autosomal dominant retinitis pigmentosa | journal = Investigative Ophthalmology &amp; Visual Science | volume = 55 | issue = 11 | pages = 7159–64 | date = Nov 2014 | pmid = 25316723 | doi = 10.1167/iovs.14-15520 }}&lt;/ref&gt; It is also expressed in cells derived from [[hematopoietic]] [[stem cell]]s, such as RBCs, [[leukocyte]]s, and [[platelet]]s, as well as from erythroid-progenitor cells.&lt;ref name=pmid12432216/&gt; Of note, HK1 is the sole hexokinase isoform found in the cells and tissues which rely most heavily on glucose metabolism for their function, including brain, erythrocytes, platelets, leukocytes, and [[fibroblast]]s.&lt;ref name=pmid21781351&gt;{{cite journal | vauthors = Gjesing AP, Nielsen AA, Brandslund I, Christensen C, Sandbæk A, Jørgensen T, Witte D, Bonnefond A, Froguel P, Hansen T, Pedersen O | title = Studies of a genetic variant in HK1 in relation to quantitative metabolic traits and to the prevalence of type 2 diabetes | journal = BMC Medical Genetics | volume = 12 | page = 99 | date = 25 July 2011 | pmid = 21781351 | doi = 10.1186/1471-2350-12-99 }}&lt;/ref&gt; In rats, it is also the predominant hexokinase in fetal tissues, likely due to their constitutive glucose utilization.&lt;ref name=pmid9056853/&gt;&lt;ref name=pmid4058069/&gt;<br /> <br /> == Clinical significance ==<br /> <br /> [[Mutations]] in this gene are associated with type 4H of [[Charcot–Marie–Tooth disease]], also known as Russe-type hereditary motor and sensory neuropathy (HMSNR).&lt;ref&gt;{{OMIM|605285}}&lt;/ref&gt; Due to the crucial role of HK1 in glycolysis, hexokinase deficiency has been identified as a cause of erythroenzymopathies associated with [[hereditary non-spherocytic hemolytic anemia]] (HNSHA). Likewise, HK1 deficiency has resulted in [[wikt:cerebral|cerebral]] [[white matter]] injury, malformations, and psychomotor retardation, as well as latent [[diabetes mellitus]] and pan[[myelopathy]].&lt;ref name=pmid12432216/&gt; Meanwhile, HK1 is highly expressed in [[cancer]]s, and its anti-apoptotic effects have been observed in highly glycolytic [[hepatoma]] cells.&lt;ref name=pmid24018046/&gt;&lt;ref name=pmid12432216/&gt;<br /> <br /> === Neurodegenerative disorders ===<br /> <br /> HK1 may be causally linked to [[mood disorder|mood]] and [[psychotic disorders]], including [[unipolar depression]] (UPD), [[bipolar disorder]] (BPD), and [[schizophrenia]] via both its roles in energy metabolism and cell survival. For instance, the accumulation of lactate in the brains of BPD and SCHZ patients potentially results from the decoupling of HK1 from the OMM, and by extension, glycolysis from mitochondrial oxidative, phosphorylation. In the case of SCHZ, decreasing HK1 attachment to the OMM in the [[parietal cortex]] resulted in decreased glutamate reuptake capacity and, thus, glutamate spillover from the [[synapse]]s. The released glutamate activates extrasynaptic glutamate receptors, leading to altered structure and function of glutamate circuits, [[synaptic plasticity]], frontal cortical dysfunction, and ultimately, the cognitive deficits characteristic of SCHZ.&lt;ref name=pmid24560881/&gt; Similarly, Hk1 mitochondrial detachment has been associated with [[hypothyroidism]], which involves abnormal brain development and increased risk for [[depression (mood)|depression]], while its attachment leads to [[neural]] growth.&lt;ref name=pmid22018957/&gt; In [[Parkinson’s disease]], HK1 detachment from VDAC via [[Parkin (ligase)|Parkin]]-mediated [[ubiquitylation]] and degradation disrupts the MPTP on [[Depolarization|depolarized]] mitochondria, consequently blocking mitochondrial localization of Parkin and halting glycolysis.&lt;ref name=pmid23068103/&gt; Further research is required to determine the relative HK1 detachment needed in various cell types for different psychiatric disorders. This research can also contribute to developing therapies to target causes of the detachment, from gene mutations to interference by factors such as [[beta-amyloid]] peptide and [[insulin]].&lt;ref name=pmid22018957/&gt;<br /> <br /> === Retinitis pigmentosa ===<br /> <br /> A [[heterozygous]] [[missense mutation]] in the ''HK1'' gene (a change at position 847 from glutamate to lysine) has been linked to [[retinitis pigmentosa]].&lt;ref name=pmid25190649&gt;{{cite journal | vauthors = Sullivan LS, Koboldt DC, Bowne SJ, Lang S, Blanton SH, Cadena E, Avery CE, Lewis RA, Webb-Jones K, Wheaton DH, Birch DG, Coussa R, Ren H, Lopez I, Chakarova C, Koenekoop RK, Garcia CA, Fulton RS, Wilson RK, Weinstock GM, Daiger SP | title = A dominant mutation in hexokinase 1 (HK1) causes retinitis pigmentosa | journal = Investigative Ophthalmology &amp; Visual Science | volume = 55 | issue = 11 | pages = 7147–58 | date = Nov 2014 | pmid = 25190649 | doi = 10.1167/iovs.14-15419 }}&lt;/ref&gt;&lt;ref name=pmid25316723/&gt; Since this [[substitution mutation]] is located far from known functional sites and does not impair the enzyme’s glycolytic activity, it is likely that the mutation acts through another biological mechanism unique to the retina.&lt;ref name=pmid25190649/&gt; Notably, studies in mouse retina reveal interactions between Hk1, the mitochondrial metallochaperone Cox11, and the chaperone protein Ranbp2, which serve to maintain normal metabolism and function in the retina. Thus, the mutation may disrupt these interactions and lead to retinal degradation.&lt;ref name=pmid25316723/&gt; Alternatively, this mutation may act through the enzyme’s anti-apoptotic function, as disrupting the regulation of the hexokinase-mitochondria association by insulin receptors could trigger photoreceptor apoptosis and retinal degeneration.&lt;ref name=pmid25190649/&gt;&lt;ref name=pmid25316723/&gt; In this case, treatments that preserve the hexokinase–mitochondria association may serve as a potential therapeutic approach.&lt;ref name=pmid25316723/&gt;<br /> <br /> == Interactions ==<br /> <br /> HK1 is known to [[protein-protein interaction|interact]] with:<br /> *[[VDAC]],&lt;ref name=pmid23068103/&gt;<br /> *[[Parkin (ligase)|Parkin]],&lt;ref name=pmid23068103/&gt;<br /> *[[EAAT2]],&lt;ref name=pmid24560881/&gt;<br /> *[[Na+/K+ ATPase]],&lt;ref name=pmid24560881/&gt; and<br /> *[[Aconitase]].&lt;ref name=pmid24560881/&gt;<br /> <br /> <br /> ==Interactive pathway map==<br /> {{GlycolysisGluconeogenesis_WP534|highlight=HK1}}<br /> <br /> ==See also==<br /> *[[Hexokinase]]<br /> *[[HK2]]<br /> *[[HK3]]<br /> *[[Glucokinase]]<br /> <br /> == References ==<br /> {{reflist|33em}}<br /> <br /> == Further reading ==<br /> {{refbegin|33em}}<br /> * {{cite journal | vauthors = Daniele A, Altruda F, Ferrone M, Silengo L, Romeo G, Archidiacono N, Rocchi M | title = Mapping of human hexokinase 1 gene to 10q11----qter | journal = Human Heredity | volume = 42 | issue = 2 | pages = 107–10 | year = 1992 | pmid = 1572668 | doi = 10.1159/000154049 }}<br /> * {{cite journal | vauthors = Magnani M, Bianchi M, Casabianca A, Stocchi V, Daniele A, Altruda F, Ferrone M, Silengo L | title = A recombinant human 'mini'-hexokinase is catalytically active and regulated by hexose 6-phosphates | journal = The Biochemical Journal | volume = 285 | issue = 1 | pages = 193–9 | date = Jul 1992 | pmid = 1637300 | pmc = 1132765 | doi = 10.1042/bj2850193}}<br /> * {{cite journal | vauthors = Magnani M, Serafini G, Bianchi M, Casabianca A, Stocchi V | title = Human hexokinase type I microheterogeneity is due to different amino-terminal sequences | journal = The Journal of Biological Chemistry | volume = 266 | issue = 1 | pages = 502–5 | date = Jan 1991 | pmid = 1985912 | doi = }}<br /> * {{cite journal | vauthors = Adams V, Griffin LD, Gelb BD, McCabe ER | title = Protein kinase activity of rat brain hexokinase | journal = Biochemical and Biophysical Research Communications | volume = 177 | issue = 3 | pages = 1101–6 | date = Jun 1991 | pmid = 2059200 | doi = 10.1016/0006-291X(91)90652-N }}<br /> * {{cite journal | vauthors = Murakami K, Blei F, Tilton W, Seaman C, Piomelli S | title = An isozyme of hexokinase specific for the human red blood cell (HKR) | journal = Blood | volume = 75 | issue = 3 | pages = 770–5 | date = Feb 1990 | pmid = 2297576 | doi = }}<br /> * {{cite journal | vauthors = Nishi S, Seino S, Bell GI | title = Human hexokinase: sequences of amino- and carboxyl-terminal halves are homologous | journal = Biochemical and Biophysical Research Communications | volume = 157 | issue = 3 | pages = 937–43 | date = Dec 1988 | pmid = 3207429 | doi = 10.1016/S0006-291X(88)80964-1 }}<br /> * {{cite journal | vauthors = Rijksen G, Akkerman JW, van den Wall Bake AW, Hofstede DP, Staal GE | title = Generalized hexokinase deficiency in the blood cells of a patient with nonspherocytic hemolytic anemia | journal = Blood | volume = 61 | issue = 1 | pages = 12–8 | date = Jan 1983 | pmid = 6848140 | doi = }}<br /> * {{cite journal | vauthors = Bianchi M, Magnani M | title = Hexokinase mutations that produce nonspherocytic hemolytic anemia | journal = Blood Cells, Molecules &amp; Diseases | volume = 21 | issue = 1 | pages = 2–8 | year = 1995 | pmid = 7655856 | doi = 10.1006/bcmd.1995.0002 }}<br /> * {{cite journal | vauthors = Blachly-Dyson E, Zambronicz EB, Yu WH, Adams V, McCabe ER, Adelman J, Colombini M, Forte M | title = Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel | journal = The Journal of Biological Chemistry | volume = 268 | issue = 3 | pages = 1835–41 | date = Jan 1993 | pmid = 8420959 | doi = }}<br /> * {{cite journal | vauthors = Aleshin AE, Zeng C, Fromm HJ, Honzatko RB | title = Crystallization and preliminary X-ray analysis of human brain hexokinase | journal = FEBS Letters | volume = 391 | issue = 1-2 | pages = 9–10 | date = Aug 1996 | pmid = 8706938 | doi = 10.1016/0014-5793(96)00688-6 }}<br /> * {{cite journal | vauthors = Visconti PE, Olds-Clarke P, Moss SB, Kalab P, Travis AJ, de las Heras M, Kopf GS | title = Properties and localization of a tyrosine phosphorylated form of hexokinase in mouse sperm | journal = Molecular Reproduction and Development | volume = 43 | issue = 1 | pages = 82–93 | date = Jan 1996 | pmid = 8720117 | doi = 10.1002/(SICI)1098-2795(199601)43:1&lt;82::AID-MRD11&gt;3.0.CO;2-6 }}<br /> * {{cite journal | vauthors = Mori C, Nakamura N, Welch JE, Shiota K, Eddy EM | title = Testis-specific expression of mRNAs for a unique human type 1 hexokinase lacking the porin-binding domain | journal = Molecular Reproduction and Development | volume = 44 | issue = 1 | pages = 14–22 | date = May 1996 | pmid = 8722688 | doi = 10.1002/(SICI)1098-2795(199605)44:1&lt;14::AID-MRD2&gt;3.0.CO;2-W }}<br /> * {{cite journal | vauthors = Murakami K, Piomelli S | title = Identification of the cDNA for human red blood cell-specific hexokinase isozyme | journal = Blood | volume = 89 | issue = 3 | pages = 762–6 | date = Feb 1997 | pmid = 9028305 | doi = }}<br /> * {{cite journal | vauthors = Ruzzo A, Andreoni F, Magnani M | title = An erythroid-specific exon is present in the human hexokinase gene | journal = Blood | volume = 91 | issue = 1 | pages = 363–4 | date = Jan 1998 | pmid = 9414310 | doi = }}<br /> * {{cite journal | vauthors = Travis AJ, Foster JA, Rosenbaum NA, Visconti PE, Gerton GL, Kopf GS, Moss SB | title = Targeting of a germ cell-specific type 1 hexokinase lacking a porin-binding domain to the mitochondria as well as to the head and fibrous sheath of murine spermatozoa | journal = Molecular Biology of the Cell | volume = 9 | issue = 2 | pages = 263–76 | date = Feb 1998 | pmid = 9450953 | pmc = 25249 | doi = 10.1091/mbc.9.2.263 }}<br /> * {{cite journal | vauthors = Aleshin AE, Zeng C, Bourenkov GP, Bartunik HD, Fromm HJ, Honzatko RB | title = The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate | journal = Structure | volume = 6 | issue = 1 | pages = 39–50 | date = Jan 1998 | pmid = 9493266 | doi = 10.1016/S0969-2126(98)00006-9 }}<br /> * {{cite journal | vauthors = Ruzzo A, Andreoni F, Magnani M | title = Structure of the human hexokinase type I gene and nucleotide sequence of the 5' flanking region | journal = The Biochemical Journal | volume = 331 | issue = 2 | pages = 607–13 | date = Apr 1998 | pmid = 9531504 | pmc = 1219395 | doi = 10.1042/bj3310607}}<br /> * {{cite journal | vauthors = Aleshin AE, Zeng C, Bartunik HD, Fromm HJ, Honzatko RB | title = Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate | journal = Journal of Molecular Biology | volume = 282 | issue = 2 | pages = 345–57 | date = Sep 1998 | pmid = 9735292 | doi = 10.1006/jmbi.1998.2017 }}<br /> * {{cite journal | vauthors = Murakami K, Kanno H, Miwa S, Piomelli S | title = Human HKR isozyme: organization of the hexokinase I gene, the erythroid-specific promoter, and transcription initiation site | journal = Molecular Genetics and Metabolism | volume = 67 | issue = 2 | pages = 118–30 | date = Jun 1999 | pmid = 10356311 | doi = 10.1006/mgme.1999.2842 }}<br /> {{refend}}<br /> <br /> {{PDB Gallery|geneid=3098}}<br /> {{Glycolysis enzymes}}<br /> {{Portal|Mitochondria}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Psoriasin&diff=157495110 Psoriasin 2009-07-29T11:57:53Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>{{PBB|geneid=6278}}<br /> '''S100 calcium binding protein A7''', also known as '''S100A7''', is a human [[gene]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein differs from the other S100 proteins of known structure in its lack of calcium binding ability in one EF-hand at the N-terminus. This protein is markedly over-expressed in the skin lesions of psoriatic patients, but is excluded as a candidate gene for familial psoriasis susceptibility. The protein functions as a prominent antimicrobial peptide mainly against ''E. coli.''&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: S100A7 S100 calcium binding protein A7| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=6278| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==Interactions==<br /> S100A7 has been shown to [[Protein-protein_interaction|interact]] with [[COP9 constitutive photomorphogenic homolog subunit 5]],&lt;ref name=pmid12702588&gt;{{cite journal | quotes = yes |last=Emberley |first=Ethan D |authorlink= |coauthors=Niu Yulian, Leygue Etienne, Tomes Ladislav, Gietz R Daniel, Murphy Leigh C, Watson Peter H |year=[[2003]]|month=Apr. |title=Psoriasin interacts with Jab1 and influences breast cancer progression |journal=Cancer Res. |volume=63 |issue=8 |pages=1954-61 |publisher= |location = United States| issn = 0008-5472| pmid = 12702588 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt; [[FABP5]]&lt;ref name=pmid12839573&gt;{{cite journal | quotes = yes |last=Ruse |first=Monica |authorlink= |coauthors=Broome Ann-Marie, Eckert Richard L |year=[[2003]]|month=Jul. |title=S100A7 (psoriasin) interacts with epidermal fatty acid binding protein and localizes in focal adhesion-like structures in cultured keratinocytes |journal=J. Invest. Dermatol. |volume=121 |issue=1 |pages=132-41 |publisher= |location = United States| issn = 0022-202X| pmid = 12839573 |doi = 10.1046/j.1523-1747.2003.12309.x | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt;&lt;ref name=pmid10331666&gt;{{cite journal | quotes = yes |last=Hagens |first=G |authorlink= |coauthors=Roulin K, Hotz R, Saurat J H, Hellman U, Siegenthaler G |year=[[1999]]|month=Feb. |title=Probable interaction between S100A7 and E-FABP in the cytosol of human keratinocytes from psoriatic scales |journal=Mol. Cell. Biochem. |volume=192 |issue=1-2 |pages=123-8 |publisher= |location = NETHERLANDS| issn = 0300-8177| pmid = 10331666 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt; and [[RANBP9]].&lt;ref name=pmid12421467&gt;{{cite journal | quotes = yes |last=Emberley |first=Ethan D |authorlink= |coauthors=Gietz R Daniel, Campbell J Darren, HayGlass Kent T, Murphy Leigh C, Watson Peter H |year=[[2002]]|month=Nov. |title=RanBPM interacts with psoriasin in vitro and their expression correlates with specific clinical features in vivo in breast cancer |journal=BMC Cancer |volume=2 |issue= |pages=28 |publisher= |location = England| issn = | pmid = 12421467 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt;<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Schäfer BW, Heizmann CW |title=The S100 family of EF-hand calcium-binding proteins: functions and pathology. |journal=Trends Biochem. Sci. |volume=21 |issue= 4 |pages= 134–40 |year= 1996 |pmid= 8701470 |doi= }}<br /> *{{cite journal | author=Watson PH, Leygue ER, Murphy LC |title=Psoriasin (S100A7). |journal=Int. J. Biochem. Cell Biol. |volume=30 |issue= 5 |pages= 567–71 |year= 1998 |pmid= 9693957 |doi=10.1016/S1357-2725(97)00066-6 }}<br /> *{{cite journal | author=Rasmussen HH, van Damme J, Puype M, ''et al.'' |title=Microsequences of 145 proteins recorded in the two-dimensional gel protein database of normal human epidermal keratinocytes. |journal=Electrophoresis |volume=13 |issue= 12 |pages= 960–9 |year= 1993 |pmid= 1286667 |doi=10.1002/elps.11501301199 }}<br /> *{{cite journal | author=Madsen P, Rasmussen HH, Leffers H, ''et al.'' |title=Molecular cloning, occurrence, and expression of a novel partially secreted protein &quot;psoriasin&quot; that is highly up-regulated in psoriatic skin. |journal=J. Invest. Dermatol. |volume=97 |issue= 4 |pages= 701–12 |year= 1991 |pmid= 1940442 |doi=10.1111/1523-1747.ep12484041 }}<br /> *{{cite journal | author=Schäfer BW, Wicki R, Engelkamp D, ''et al.'' |title=Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. |journal=Genomics |volume=25 |issue= 3 |pages= 638–43 |year= 1995 |pmid= 7759097 |doi=10.1016/0888-7543(95)80005-7 }}<br /> *{{cite journal | author=Hoffmann HJ, Olsen E, Etzerodt M, ''et al.'' |title=Psoriasin binds calcium and is upregulated by calcium to levels that resemble those observed in normal skin. |journal=J. Invest. Dermatol. |volume=103 |issue= 3 |pages= 370–5 |year= 1994 |pmid= 8077703 |doi=10.1111/1523-1747.ep12395202 }}<br /> *{{cite journal | author=Bürgisser DM, Siegenthaler G, Kuster T, ''et al.'' |title=Amino acid sequence analysis of human S100A7 (psoriasin) by tandem mass spectrometry. |journal=Biochem. Biophys. Res. Commun. |volume=217 |issue= 1 |pages= 257–63 |year= 1996 |pmid= 8526920 |doi= 10.1006/bbrc.1995.2772 }}<br /> *{{cite journal | author=Celis JE, Rasmussen HH, Vorum H, ''et al.'' |title=Bladder squamous cell carcinomas express psoriasin and externalize it to the urine. |journal=J. Urol. |volume=155 |issue= 6 |pages= 2105–12 |year= 1996 |pmid= 8618345 |doi=10.1016/S0022-5347(01)66118-4 }}<br /> *{{cite journal | author=Brodersen DE, Etzerodt M, Madsen P, ''et al.'' |title=EF-hands at atomic resolution: the structure of human psoriasin (S100A7) solved by MAD phasing. |journal=Structure |volume=6 |issue= 4 |pages= 477–89 |year= 1998 |pmid= 9562557 |doi=10.1016/S0969-2126(98)00049-5 }}<br /> *{{cite journal | author=Brodersen DE, Nyborg J, Kjeldgaard M |title=Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states. |journal=Biochemistry |volume=38 |issue= 6 |pages= 1695–704 |year= 1999 |pmid= 10026247 |doi= 10.1021/bi982483d }}<br /> *{{cite journal | author=Semprini S, Capon F, Bovolenta S, ''et al.'' |title=Genomic structure, promoter characterisation and mutational analysis of the S100A7 gene: exclusion of a candidate for familial psoriasis susceptibility. |journal=Hum. Genet. |volume=104 |issue= 2 |pages= 130–4 |year= 1999 |pmid= 10190323 |doi=10.1007/s004390050925 }}<br /> *{{cite journal | author=Hagens G, Masouyé I, Augsburger E, ''et al.'' |title=Calcium-binding protein S100A7 and epidermal-type fatty acid-binding protein are associated in the cytosol of human keratinocytes. |journal=Biochem. J. |volume=339 ( Pt 2) |issue= |pages= 419–27 |year= 1999 |pmid= 10191275 |doi=10.1042/0264-6021:3390419 }}<br /> *{{cite journal | author=Hagens G, Roulin K, Hotz R, ''et al.'' |title=Probable interaction between S100A7 and E-FABP in the cytosol of human keratinocytes from psoriatic scales. |journal=Mol. Cell. Biochem. |volume=192 |issue= 1-2 |pages= 123–8 |year= 1999 |pmid= 10331666 |doi=10.1023/A:1006894909694 }}<br /> *{{cite journal | author=Al-Haddad S, Zhang Z, Leygue E, ''et al.'' |title=Psoriasin (S100A7) expression and invasive breast cancer. |journal=Am. J. Pathol. |volume=155 |issue= 6 |pages= 2057–66 |year= 1999 |pmid= 10595935 |doi= }}<br /> *{{cite journal | author=Dias Neto E, Correa RG, Verjovski-Almeida S, ''et al.'' |title=Shotgun sequencing of the human transcriptome with ORF expressed sequence tags. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 7 |pages= 3491–6 |year= 2000 |pmid= 10737800 |doi=10.1073/pnas.97.7.3491 }}<br /> *{{cite journal | author=Ruse M, Lambert A, Robinson N, ''et al.'' |title=S100A7, S100A10, and S100A11 are transglutaminase substrates. |journal=Biochemistry |volume=40 |issue= 10 |pages= 3167–73 |year= 2001 |pmid= 11258932 |doi=10.1021/bi0019747 }}<br /> *{{cite journal | author=Enerbäck C, Porter DA, Seth P, ''et al.'' |title=Psoriasin expression in mammary epithelial cells in vitro and in vivo. |journal=Cancer Res. |volume=62 |issue= 1 |pages= 43–7 |year= 2002 |pmid= 11782356 |doi= }}<br /> *{{cite journal | author=Gemmill RM, Bemis LT, Lee JP, ''et al.'' |title=The TRC8 hereditary kidney cancer gene suppresses growth and functions with VHL in a common pathway. |journal=Oncogene |volume=21 |issue= 22 |pages= 3507–16 |year= 2002 |pmid= 12032852 |doi= 10.1038/sj.onc.1205437 }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=6278}}<br /> <br /> {{gene-1-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=%CE%91-Globin&diff=99509070 Α-Globin 2009-07-29T05:53:59Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>{{PBB|geneid=3039}}<br /> '''Hemoglobin, alpha 1''', also known as '''HBA1''', is a human [[gene]] encoding the [[hemoglobin]] protein.<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The human alpha globin gene cluster located on chromosome 16 spans about 30 kb and includes seven loci: 5'- zeta - pseudozeta - mu - pseudoalpha-1 - alpha-2 - alpha-1 - theta - 3'. The alpha-2 (HBA2) and alpha-1 (HBA1) coding sequences are identical. These genes differ slightly over the 5' untranslated regions and the introns, but they differ significantly over the 3' untranslated regions. Two alpha chains plus two beta chains constitute HbA, which in normal adult life comprises about 97% of the total [[hemoglobin]]; alpha chains combine with delta chains to constitute HbA-2, which with HbF (fetal hemoglobin) makes up the remaining 3% of adult hemoglobin. Alpha [[thalassemia]]s result from deletions of each of the alpha genes as well as deletions of both HBA2 and HBA1; some nondeletion alpha thalassemias have also been reported.&lt;ref&gt;{{cite web | title = Entrez Gene: HBA1 hemoglobin, alpha 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3039| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==Interactions==<br /> Hemoglobin, alpha 1 has been shown to [[Protein-protein_interaction|interact]] with [[HBB]].&lt;ref name=pmid16169070&gt;{{cite journal | quotes = yes |last=Stelzl |first=Ulrich |authorlink= |coauthors=Worm Uwe, Lalowski Maciej, Haenig Christian, Brembeck Felix H, Goehler Heike, Stroedicke Martin, Zenkner Martina, Schoenherr Anke, Koeppen Susanne, Timm Jan, Mintzlaff Sascha, Abraham Claudia, Bock Nicole, Kietzmann Silvia, Goedde Astrid, Toksöz Engin, Droege Anja, Krobitsch Sylvia, Korn Bernhard, Birchmeier Walter, Lehrach Hans, Wanker Erich E |year=[[2005]]|month=Sep. |title=A human protein-protein interaction network: a resource for annotating the proteome |journal=Cell |volume=122 |issue=6 |pages=957-68 |publisher= |location = United States| issn = 0092-8674| pmid = 16169070| pmid = 16179252 |doi = 10.1016/j.cell.2005.08.029 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt;&lt;ref name=pmid6644819&gt;{{cite journal | quotes = yes |last=Shaanan |first=B |authorlink= |year=[[1983]]|month=Nov. |title=Structure of human oxyhaemoglobin at 2.1 A resolution |journal=J. Mol. Biol. |volume=171 |issue=1 |pages=31-59 |publisher= |location = ENGLAND| issn = 0022-2836| pmid = 6644819 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt;<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Turbpaiboon C, Svasti S, Sawangareetakul P, ''et al.'' |title=Hb Siam [alpha15(A13)Gly--&gt;Arg (alpha1) (GGT--&gt;CGT)] is a typical alpha chain hemoglobinopathy without an alpha-thalassemic effect. |journal=Hemoglobin |volume=26 |issue= 1 |pages= 77–81 |year= 2002 |pmid= 11939517 |doi= }}<br /> *{{cite journal | author=Yalçin A, Avcu F, Beyan C, ''et al.'' |title=A case of HB J-Meerut (or Hb J-Birmingham) [alpha 120(H3)Ala--&gt;Glu] |journal=Hemoglobin |volume=18 |issue= 6 |pages= 433–5 |year= 1995 |pmid= 7713747 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi= }}<br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Schillirò G, Russo-Mancuso G, Dibenedetto SP, ''et al.'' |title=Six rare hemoglobin variants found in Sicily. |journal=Hemoglobin |volume=15 |issue= 5 |pages= 431–7 |year= 1992 |pmid= 1802885 |doi= }}<br /> *{{cite journal | author=Vafa M, Troye-Blomberg M, Anchang J, ''et al.'' |title=Multiplicity of Plasmodium falciparum infection in asymptomatic children in Senegal: relation to transmission, age and erythrocyte variants. |journal=Malar. J. |volume=7 |issue= |pages= 17 |year= 2008 |pmid= 18215251 |doi= 10.1186/1475-2875-7-17 }}<br /> *{{cite journal | author=Datta P, Chakrabarty S, Chakrabarty A, Chakrabarti A |title=Membrane interactions of hemoglobin variants, HbA, HbE, HbF and globin subunits of HbA: effects of aminophospholipids and cholesterol. |journal=Biochim. Biophys. Acta |volume=1778 |issue= 1 |pages= 1–9 |year= 2008 |pmid= 17916326 |doi= 10.1016/j.bbamem.2007.08.019 }}<br /> *{{cite journal | author=Taylor JG, Ackah D, Cobb C, ''et al.'' |title=Mutations and polymorphisms in hemoglobin genes and the risk of pulmonary hypertension and death in sickle cell disease. |journal=Am. J. Hematol. |volume=83 |issue= 1 |pages= 6–14 |year= 2008 |pmid= 17724704 |doi= 10.1002/ajh.21035 }}<br /> *{{cite journal | author=Sahu SC, Simplaceanu V, Gong Q, ''et al.'' |title=Insights into the solution structure of human deoxyhemoglobin in the absence and presence of an allosteric effector. |journal=Biochemistry |volume=46 |issue= 35 |pages= 9973–80 |year= 2007 |pmid= 17691822 |doi= 10.1021/bi700935z }}<br /> *{{cite journal | author=Sorour Y, Heppinstall S, Porter N, ''et al.'' |title=Is routine molecular screening for common alpha-thalassaemia deletions necessary as part of an antenatal screening programme? |journal=Journal of medical screening |volume=14 |issue= 2 |pages= 60–1 |year= 2007 |pmid= 17626702 |doi= 10.1258/096914107781261981 }}<br /> *{{cite journal | author=Hung CC, Lee CN, Chen CP, ''et al.'' |title=Molecular assay of -alpha(3.7) and -alpha(4.2) deletions causing alpha-thalassemia by denaturing high-performance liquid chromatography. |journal=Clin. Biochem. |volume=40 |issue= 11 |pages= 817–21 |year= 2007 |pmid= 17512924 |doi= 10.1016/j.clinbiochem.2007.03.018 }}<br /> *{{cite journal | author=Ye BC, Zhang Z, Lei Z |title=Molecular analysis of alpha/beta-thalassemia in a southern Chinese population. |journal=Genet. Test. |volume=11 |issue= 1 |pages= 75–83 |year= 2007 |pmid= 17394396 |doi= 10.1089/gte.2006.0502 }}<br /> *{{cite journal | author=Dilley J, Ganesan A, Deepa R, ''et al.'' |title=Association of A1C with cardiovascular disease and metabolic syndrome in Asian Indians with normal glucose tolerance. |journal=Diabetes Care |volume=30 |issue= 6 |pages= 1527–32 |year= 2007 |pmid= 17351274 |doi= 10.2337/dc06-2414 }}<br /> *{{cite journal | author=Fonseka PV, Vasudevan G, Clarizia LJ, McDonald MJ |title=Temperature dependent soret spectral band shifts accompany human CN-mesohemoglobin assembly. |journal=Protein J. |volume=26 |issue= 4 |pages= 257–63 |year= 2007 |pmid= 17191128 |doi= 10.1007/s10930-006-9067-7 }}<br /> *{{cite journal | author=Sankar VH, Arya V, Tewari D, ''et al.'' |title=Genotyping of alpha-thalassemia in microcytic hypochromic anemia patients from North India. |journal=J. Appl. Genet. |volume=47 |issue= 4 |pages= 391–5 |year= 2007 |pmid= 17132905 |doi= }}<br /> *{{cite journal | author=Origa R, Sollaino MC, Giagu N, ''et al.'' |title=Clinical and molecular analysis of haemoglobin H disease in Sardinia: haematological, obstetric and cardiac aspects in patients with different genotypes. |journal=Br. J. Haematol. |volume=136 |issue= 2 |pages= 326–32 |year= 2007 |pmid= 17129226 |doi= 10.1111/j.1365-2141.2006.06423.x }}<br /> *{{cite journal | author=Hussein OA, Gefen Y, Zidan JM, ''et al.'' |title=LDL oxidation is associated with increased blood hemoglobin A1c levels in diabetic patients. |journal=Clin. Chim. Acta |volume=377 |issue= 1-2 |pages= 114–8 |year= 2007 |pmid= 17070510 |doi= 10.1016/j.cca.2006.09.002 }}<br /> *{{cite journal | author=Pan W, Galkin O, Filobelo L, ''et al.'' |title=Metastable mesoscopic clusters in solutions of sickle-cell hemoglobin. |journal=Biophys. J. |volume=92 |issue= 1 |pages= 267–77 |year= 2007 |pmid= 17040989 |doi= 10.1529/biophysj.106.094854 }}<br /> *{{cite journal | author=Pistrosch F, Koehler C, Wildbrett J, Hanefeld M |title=Relationship between diurnal glucose levels and HbA1c in type 2 diabetes. |journal=Horm. Metab. Res. |volume=38 |issue= 7 |pages= 455–9 |year= 2006 |pmid= 16933182 |doi= 10.1055/s-2006-947838 }}<br /> *{{cite journal | author=Chong YM, Tan JA, Zubaidah Z, ''et al.'' |title=Screening of concurrent alpha-thalassaemia 1 in beta-thalassaemia carriers. |journal=Med. J. Malaysia |volume=61 |issue= 2 |pages= 217–20 |year= 2006 |pmid= 16898315 |doi= }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=3039}}<br /> <br /> {{protein-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = no<br /> | update_citations = yes<br /> }}<br /> {{Hemeproteins}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hexokinase_1&diff=193332652 Hexokinase 1 2009-07-29T05:28:15Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>{{PBB|geneid=3098}}<br /> '''Hexokinase 1''', also known as '''HK1''', is a human [[gene]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Hexokinases phosphorylate glucose to produce glucose-6-phosphate, thus committing glucose to the glycolytic pathway. This gene encodes a ubiquitous form of hexokinase which localizes to the outer membrane of mitochondria. Mutations in this gene have been associated with hemolytic anemia due to hexokinase deficiency. Alternative splicing of this gene results in five transcript variants which encode different isoforms, some of which are tissue-specific. Each isoform has a distinct N-terminus; the remainder of the protein is identical among all the isoforms. A sixth transcript variant has been described, but due to the presence of several stop codons, it is not thought to encode a protein.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HK1 hexokinase 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3098| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Murakami K, Kanno H, Tancabelic J, Fujii H |title=Gene expression and biological significance of hexokinase in erythroid cells. |journal=Acta Haematol. |volume=108 |issue= 4 |pages= 204–9 |year= 2003 |pmid= 12432216 |doi=10.1159/000065656 }}<br /> *{{cite journal | author=Daniele A, Altruda F, Ferrone M, ''et al.'' |title=Mapping of human hexokinase 1 gene to 10q11----qter. |journal=Hum. Hered. |volume=42 |issue= 2 |pages= 107–10 |year= 1992 |pmid= 1572668 |doi=10.1159/000154049 }}<br /> *{{cite journal | author=Magnani M, Bianchi M, Casabianca A, ''et al.'' |title=A recombinant human 'mini'-hexokinase is catalytically active and regulated by hexose 6-phosphates. |journal=Biochem. J. |volume=285 ( Pt 1) |issue= |pages= 193–9 |year= 1992 |pmid= 1637300 |doi= }}<br /> *{{cite journal | author=Magnani M, Serafini G, Bianchi M, ''et al.'' |title=Human hexokinase type I microheterogeneity is due to different amino-terminal sequences. |journal=J. Biol. Chem. |volume=266 |issue= 1 |pages= 502–5 |year= 1991 |pmid= 1985912 |doi= }}<br /> *{{cite journal | author=Adams V, Griffin LD, Gelb BD, McCabe ER |title=Protein kinase activity of rat brain hexokinase. |journal=Biochem. Biophys. Res. Commun. |volume=177 |issue= 3 |pages= 1101–6 |year= 1991 |pmid= 2059200 |doi=10.1016/0006-291X(91)90652-N }}<br /> *{{cite journal | author=Murakami K, Blei F, Tilton W, ''et al.'' |title=An isozyme of hexokinase specific for the human red blood cell (HKR) |journal=Blood |volume=75 |issue= 3 |pages= 770–5 |year= 1990 |pmid= 2297576 |doi= }}<br /> *{{cite journal | author=Nishi S, Seino S, Bell GI |title=Human hexokinase: sequences of amino- and carboxyl-terminal halves are homologous. |journal=Biochem. Biophys. Res. Commun. |volume=157 |issue= 3 |pages= 937–43 |year= 1989 |pmid= 3207429 |doi=10.1016/S0006-291X(88)80964-1 }}<br /> *{{cite journal | author=Rijksen G, Akkerman JW, van den Wall Bake AW, ''et al.'' |title=Generalized hexokinase deficiency in the blood cells of a patient with nonspherocytic hemolytic anemia. |journal=Blood |volume=61 |issue= 1 |pages= 12–8 |year= 1983 |pmid= 6848140 |doi= }}<br /> *{{cite journal | author=Bianchi M, Magnani M |title=Hexokinase mutations that produce nonspherocytic hemolytic anemia. |journal=Blood Cells Mol. Dis. |volume=21 |issue= 1 |pages= 2–8 |year= 1995 |pmid= 7655856 |doi= 10.1006/bcmd.1995.0002 }}<br /> *{{cite journal | author=Blachly-Dyson E, Zambronicz EB, Yu WH, ''et al.'' |title=Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel. |journal=J. Biol. Chem. |volume=268 |issue= 3 |pages= 1835–41 |year= 1993 |pmid= 8420959 |doi= }}<br /> *{{cite journal | author=Aleshin AE, Zeng C, Fromm HJ, Honzatko RB |title=Crystallization and preliminary X-ray analysis of human brain hexokinase. |journal=FEBS Lett. |volume=391 |issue= 1-2 |pages= 9–10 |year= 1996 |pmid= 8706938 |doi=10.1016/0014-5793(96)00688-6 }}<br /> *{{cite journal | author=Visconti PE, Olds-Clarke P, Moss SB, ''et al.'' |title=Properties and localization of a tyrosine phosphorylated form of hexokinase in mouse sperm. |journal=Mol. Reprod. Dev. |volume=43 |issue= 1 |pages= 82–93 |year= 1996 |pmid= 8720117 |doi= 10.1002/(SICI)1098-2795(199601)43:1&lt;82::AID-MRD11&gt;3.0.CO;2-6 }}<br /> *{{cite journal | author=Mori C, Nakamura N, Welch JE, ''et al.'' |title=Testis-specific expression of mRNAs for a unique human type 1 hexokinase lacking the porin-binding domain. |journal=Mol. Reprod. Dev. |volume=44 |issue= 1 |pages= 14–22 |year= 1997 |pmid= 8722688 |doi= 10.1002/(SICI)1098-2795(199605)44:1&lt;14::AID-MRD2&gt;3.0.CO;2-W }}<br /> *{{cite journal | author=Murakami K, Piomelli S |title=Identification of the cDNA for human red blood cell-specific hexokinase isozyme. |journal=Blood |volume=89 |issue= 3 |pages= 762–6 |year= 1997 |pmid= 9028305 |doi= }}<br /> *{{cite journal | author=Ruzzo A, Andreoni F, Magnani M |title=An erythroid-specific exon is present in the human hexokinase gene. |journal=Blood |volume=91 |issue= 1 |pages= 363–4 |year= 1998 |pmid= 9414310 |doi= }}<br /> *{{cite journal | author=Travis AJ, Foster JA, Rosenbaum NA, ''et al.'' |title=Targeting of a germ cell-specific type 1 hexokinase lacking a porin-binding domain to the mitochondria as well as to the head and fibrous sheath of murine spermatozoa. |journal=Mol. Biol. Cell |volume=9 |issue= 2 |pages= 263–76 |year= 1998 |pmid= 9450953 |doi= }}<br /> *{{cite journal | author=Aleshin AE, Zeng C, Bourenkov GP, ''et al.'' |title=The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. |journal=Structure |volume=6 |issue= 1 |pages= 39–50 |year= 1998 |pmid= 9493266 |doi=10.1016/S0969-2126(98)00006-9 }}<br /> *{{cite journal | author=Ruzzo A, Andreoni F, Magnani M |title=Structure of the human hexokinase type I gene and nucleotide sequence of the 5' flanking region. |journal=Biochem. J. |volume=331 ( Pt 2) |issue= |pages= 607–13 |year= 1998 |pmid= 9531504 |doi= }}<br /> *{{cite journal | author=Aleshin AE, Zeng C, Bartunik HD, ''et al.'' |title=Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate. |journal=J. Mol. Biol. |volume=282 |issue= 2 |pages= 345–57 |year= 1998 |pmid= 9735292 |doi= 10.1006/jmbi.1998.2017 }}<br /> *{{cite journal | author=Murakami K, Kanno H, Miwa S, Piomelli S |title=Human HKR isozyme: organization of the hexokinase I gene, the erythroid-specific promoter, and transcription initiation site. |journal=Mol. Genet. Metab. |volume=67 |issue= 2 |pages= 118–30 |year= 1999 |pmid= 10356311 |doi= 10.1006/mgme.1999.2842 }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=3098}}<br /> <br /> {{gene-10-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}<br /> {{Glycolysis enzymes}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=HBZ_(Protein)&diff=100866299 HBZ (Protein) 2009-07-29T04:57:29Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>{{PBB|geneid=3050}}<br /> '''Hemoglobin, zeta''', also known as '''HBZ''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HBZ hemoglobin, zeta| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3050| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Zeta-globin is an alpha-like hemoglobin. The zeta-globin polypeptide is synthesized in the yolk sac of the early embryo, while alpha-globin is produced throughout fetal and adult like. The zeta-globin gene is a member of the human alpha-globin gene cluster that includes five functional genes and two pseudogenes. The order of genes is: 5' - zeta - pseudozeta - mu - pseudoalpha-1 - alpha-2 -alpha-1 - theta1 - 3'.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HBZ hemoglobin, zeta| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3050| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi= }}<br /> *{{cite journal | author=Proudfoot NJ, Brownlee GG |title=3' non-coding region sequences in eukaryotic messenger RNA. |journal=Nature |volume=263 |issue= 5574 |pages= 211–4 |year= 1976 |pmid= 822353 |doi= }}<br /> *{{cite journal | author=Fougerousse F, Meloni R, Roudaut C, Beckmann JS |title=Dinucleotide repeat polymorphism at the human hemoglobin alpha-1 pseudo-gene (HBAP1). |journal=Nucleic Acids Res. |volume=20 |issue= 5 |pages= 1165 |year= 1992 |pmid= 1549498 |doi= }}<br /> *{{cite journal | author=Hess J, Perez-Stable C, Wu GJ, ''et al.'' |title=End-to-end transcription of an Alu family repeat. A new type of polymerase-III-dependent terminator and its evolutionary implication. |journal=J. Mol. Biol. |volume=184 |issue= 1 |pages= 7–21 |year= 1985 |pmid= 2411938 |doi= }}<br /> *{{cite journal | author=Marotta CA, Forget BG, Weissman SM, ''et al.'' |title=Nucleotide sequences of human globin messenger RNA. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=71 |issue= 6 |pages= 2300–4 |year= 1974 |pmid= 4135409 |doi= }}<br /> *{{cite journal | author=Perez-Stable C, Ayres TM, Shen CK |title=Distinctive sequence organization and functional programming of an Alu repeat promoter. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=81 |issue= 17 |pages= 5291–5 |year= 1984 |pmid= 6089189 |doi= }}<br /> *{{cite journal | author=Clegg JB, Gagnon J |title=Structure of the zeta chain of human embryonic hemoglobin. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=78 |issue= 10 |pages= 6076–80 |year= 1982 |pmid= 6171809 |doi= }}<br /> *{{cite journal | author=Aschauer H, Schäfer W, Sanguansermsri T, Braunitzer G |title=[Human embryonic haemoglobins. Ac-Ser-Leu-Thr-is the N-terminal sequence of the zeta-chains (author's transl)] |journal=Hoppe-Seyler's Z. Physiol. Chem. |volume=362 |issue= 12 |pages= 1657–9 |year= 1982 |pmid= 6172357 |doi= }}<br /> *{{cite journal | author=Aschauer H, Sanguansermsri T, Braunitzer G |title=[Human embryonic haemoglobins. The primary structure of the zeta chains (author's transl)] |journal=Hoppe-Seyler's Z. Physiol. Chem. |volume=362 |issue= 8 |pages= 1159–62 |year= 1982 |pmid= 6179844 |doi= }}<br /> *{{cite journal | author=Proudfoot NJ, Gil A, Maniatis T |title=The structure of the human zeta-globin gene and a closely linked, nearly identical pseudogene. |journal=Cell |volume=31 |issue= 3 Pt 2 |pages= 553–63 |year= 1983 |pmid= 6297773 |doi= }}<br /> *{{cite journal | author=Goodbourn SE, Higgs DR, Clegg JB, Weatherall DJ |title=Molecular basis of length polymorphism in the human zeta-globin gene complex. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=80 |issue= 16 |pages= 5022–6 |year= 1983 |pmid= 6308667 |doi= }}<br /> *{{cite journal | author=Cohen-Solal MM, Authier B, deRiel JK, ''et al.'' |title=Cloning and nucleotide sequence analysis of human embryonic zeta-globin cDNA. |journal=DNA |volume=1 |issue= 4 |pages= 355–63 |year= 1983 |pmid= 6963223 |doi= }}<br /> *{{cite journal | author=Orkin SH, Michelson A |title=Partial deletion of the alpha-globin structural gene in human alpha-thalassaemia. |journal=Nature |volume=286 |issue= 5772 |pages= 538–40 |year= 1980 |pmid= 7402334 |doi= }}<br /> *{{cite journal | author=Flint J, Thomas K, Micklem G, ''et al.'' |title=The relationship between chromosome structure and function at a human telomeric region. |journal=Nat. Genet. |volume=15 |issue= 3 |pages= 252–7 |year= 1997 |pmid= 9054936 |doi= 10.1038/ng0397-252 }}<br /> *{{cite journal | author=Luo HY, Liang XL, Frye C, ''et al.'' |title=Embryonic hemoglobins are expressed in definitive cells. |journal=Blood |volume=94 |issue= 1 |pages= 359–61 |year= 1999 |pmid= 10381533 |doi= }}<br /> *{{cite journal | author=Daniels RJ, Peden JF, Lloyd C, ''et al.'' |title=Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16. |journal=Hum. Mol. Genet. |volume=10 |issue= 4 |pages= 339–52 |year= 2001 |pmid= 11157797 |doi= }}<br /> *{{cite journal | author=Lau ET, Kwok YK, Chui DH, ''et al.'' |title=Embryonic and fetal globins are expressed in adult erythroid progenitor cells and in erythroid cell cultures. |journal=Prenat. Diagn. |volume=21 |issue= 7 |pages= 529–39 |year= 2001 |pmid= 11494285 |doi= 10.1002/pd.81 }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=3050}}<br /> <br /> {{gene-16-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}<br /> {{Hemeproteins}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=HBG2&diff=100467483 HBG2 2009-07-29T04:56:48Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>{{PBB|geneid=3048}}<br /> '''Hemoglobin, gamma G''', also known as '''HBG2''', is a human [[gene]].<br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The gamma globin genes (HBG1 and HBG2) are normally expressed in the fetal liver, spleen and bone marrow. Two gamma chains together with two alpha chains constitute fetal hemoglobin (HbF) which is normally replaced by adult hemoglobin (HbA) at birth. In some beta-thalassemias and related conditions, gamma chain production continues into adulthood. The two types of gamma chains differ at residue 136 where glycine is found in the G-gamma product (HBG2) and alanine is found in the A-gamma product (HBG1). The former is predominant at birth. The order of the genes in the beta-globin cluster is: 5'- epsilon -- gamma-G -- gamma-A -- delta -- beta--3'.&lt;ref&gt;{{cite web | title = Entrez Gene: HBG2 hemoglobin, gamma G| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3048| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Gelinas R, Yagi M, Endlich B, ''et al.'' |title=Sequences of G gamma, A gamma, and beta genes of the Greek (A gamma) HPFH mutant: evidence for a distal CCAAT box mutation in the A gamma gene. |journal=Prog. Clin. Biol. Res. |volume=191 |issue= |pages= 125–39 |year= 1985 |pmid= 2413469 |doi= }}<br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Anderson NL, Anderson NG |title=The human plasma proteome: history, character, and diagnostic prospects. |journal=Mol. Cell Proteomics |volume=1 |issue= 11 |pages= 845–67 |year= 2003 |pmid= 12488461 |doi= }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=3048}}<br /> <br /> {{protein-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}<br /> {{Hemeproteins}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=HBG1&diff=100466451 HBG1 2009-07-29T04:56:31Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>{{PBB|geneid=3047}}<br /> '''Hemoglobin, gamma A''', also known as '''HBG1''', is a human [[gene]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The gamma globin genes (HBG1 and HBG2) are normally expressed in the fetal liver, spleen and bone marrow. Two gamma chains together with two alpha chains constitute fetal hemoglobin (HbF) which is normally replaced by adult hemoglobin (HbA) at birth. In some beta-thalassemias and related conditions, gamma chain production continues into adulthood. The two types of gamma chains differ at residue 136 where glycine is found in the G-gamma product (HBG2) and alanine is found in the A-gamma product (HBG1). The former is predominant at birth. The order of the genes in the beta-globin cluster is: 5'-epsilon -- gamma-G -- gamma-A -- delta -- beta--3'.&lt;ref&gt;{{cite web | title = Entrez Gene: HBG1 hemoglobin, gamma A| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3047| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Huisman TH, Kutlar F, Gu LH |title=Gamma chain abnormalities and gamma-globin gene rearrangements in newborn babies of various populations. |journal=Hemoglobin |volume=15 |issue= 5 |pages= 349–79 |year= 1992 |pmid= 1802881 |doi=10.3109/03630269108998857 }}<br /> *{{cite journal | author=Gelinas R, Yagi M, Endlich B, ''et al.'' |title=Sequences of G gamma, A gamma, and beta genes of the Greek (A gamma) HPFH mutant: evidence for a distal CCAAT box mutation in the A gamma gene. |journal=Prog. Clin. Biol. Res. |volume=191 |issue= |pages= 125–39 |year= 1985 |pmid= 2413469 |doi= }}<br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi=10.3109/10409239509085142 }}<br /> *{{cite journal | author=Anderson NL, Anderson NG |title=The human plasma proteome: history, character, and diagnostic prospects. |journal=Mol. Cell Proteomics |volume=1 |issue= 11 |pages= 845–67 |year= 2003 |pmid= 12488461 |doi= }}<br /> *{{cite journal | author=Chang JC, Kan YW |title=beta 0 thalassemia, a nonsense mutation in man. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=76 |issue= 6 |pages= 2886–9 |year= 1979 |pmid= 88735 |doi=10.1073/pnas.76.6.2886 }}<br /> *{{cite journal | author=Saglio G, Ricco G, Mazza U, ''et al.'' |title=Human T gamma globin chain is a variant of A gamma chain (A gamma Sardinia). |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=76 |issue= 7 |pages= 3420–4 |year= 1979 |pmid= 291015 |doi=10.1073/pnas.76.7.3420 }}<br /> *{{cite journal | author=Poon R, Kan YW, Boyer HW |title=Sequence of the 3'-noncoding and adjacent coding regions of human gamma-globin mRNA. |journal=Nucleic Acids Res. |volume=5 |issue= 12 |pages= 4625–30 |year= 1979 |pmid= 318163 |doi= }}<br /> *{{cite journal | author=Grifoni V, Kamuzora H, Lehmann H, Charlesworth D |title=A new Hb variant: Hb F Sardinia gamma75(E19) isoleucine leads to threonine found in a family with Hb G Philadelphia, beta-chain deficiency and a Lepore-like haemoglobin indistinguishable from Hb A2. |journal=Acta Haematol. |volume=53 |issue= 6 |pages= 347–55 |year= 1975 |pmid= 808940 |doi=10.1159/000208204 }}<br /> *{{cite journal | author=Proudfoot NJ, Brownlee GG |title=3' non-coding region sequences in eukaryotic messenger RNA. |journal=Nature |volume=263 |issue= 5574 |pages= 211–4 |year= 1976 |pmid= 822353 |doi=10.1038/263211a0 }}<br /> *{{cite journal | author=Marotta CA, Forget BG, Cohne-Solal M, ''et al.'' |title=Human beta-globin messenger RNA. I. Nucleotide sequences derived from complementary RNA. |journal=J. Biol. Chem. |volume=252 |issue= 14 |pages= 5019–31 |year= 1977 |pmid= 873928 |doi= }}<br /> *{{cite journal | author=Frier JA, Perutz MF |title=Structure of human foetal deoxyhaemoglobin. |journal=J. Mol. Biol. |volume=112 |issue= 1 |pages= 97–112 |year= 1977 |pmid= 881729 |doi=10.1016/S0022-2836(77)80158-7 }}<br /> *{{cite journal | author=Ahern E, Holder W, Ahern V, ''et al.'' |title=Haemoglobin F Victoria Jubilee (alpha 2 A gamma 2 80 Asp-Try). |journal=Biochim. Biophys. Acta |volume=393 |issue= 1 |pages= 188–94 |year= 1975 |pmid= 1138921 |doi= }}<br /> *{{cite journal | author=Waye JS, Cai SP, Eng B, ''et al.'' |title=Clinical course and molecular characterization of a compound heterozygote for sickle hemoglobin and hemoglobin Kenya. |journal=Am. J. Hematol. |volume=41 |issue= 4 |pages= 289–91 |year= 1993 |pmid= 1283810 |doi=10.1002/ajh.2830410413 }}<br /> *{{cite journal | author=Bailey WJ, Hayasaka K, Skinner CG, ''et al.'' |title=Reexamination of the African hominoid trichotomy with additional sequences from the primate beta-globin gene cluster. |journal=Mol. Phylogenet. Evol. |volume=1 |issue= 2 |pages= 97–135 |year= 1994 |pmid= 1342932 |doi=10.1016/1055-7903(92)90024-B }}<br /> *{{cite journal | author=Gottardi E, Losekoot M, Fodde R, ''et al.'' |title=Rapid identification by denaturing gradient gel electrophoresis of mutations in the gamma-globin gene promoters in non-deletion type HPFH. |journal=Br. J. Haematol. |volume=80 |issue= 4 |pages= 533–8 |year= 1992 |pmid= 1374633 |doi=10.1111/j.1365-2141.1992.tb04569.x }}<br /> *{{cite journal | author=Berry M, Grosveld F, Dillon N |title=A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin. |journal=Nature |volume=358 |issue= 6386 |pages= 499–502 |year= 1992 |pmid= 1379347 |doi= 10.1038/358499a0 }}<br /> *{{cite journal | author=Loudianos G, Moi P, Lavinha J, ''et al.'' |title=Normal delta-globin gene sequences in Sardinian nondeletional delta beta-thalassemia. |journal=Hemoglobin |volume=16 |issue= 6 |pages= 503–9 |year= 1993 |pmid= 1487421 |doi=10.3109/03630269208993118 }}<br /> *{{cite journal | author=Fucharoen S, Shimizu K, Fukumaki Y |title=A novel C-T transition within the distal CCAAT motif of the G gamma-globin gene in the Japanese HPFH: implication of factor binding in elevated fetal globin expression. |journal=Nucleic Acids Res. |volume=18 |issue= 17 |pages= 5245–53 |year= 1990 |pmid= 1698280 |doi=10.1093/nar/18.17.5245 }}<br /> *{{cite journal | author=Plaseska D, Kutlar F, Wilson JB, ''et al.'' |title=Hb F-Jiangsu, the first gamma chain variant with a valine----methionine substitution: alpha 2A gamma 2 134(H12)Val----Met. |journal=Hemoglobin |volume=14 |issue= 2 |pages= 177–83 |year= 1991 |pmid= 1703137 |doi=10.3109/03630269009046959 }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=3047}}<br /> <br /> {{protein-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}<br /> {{Hemeproteins}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=%CE%95-Globin&diff=100455637 Ε-Globin 2009-07-29T04:56:11Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>&lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. <br /> --&gt;<br /> <br /> {{PBB|geneid=3046}}<br /> '''Hemoglobin, epsilon 1''', also known as '''HBE1''', is a human [[gene]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The epsilon globin gene (HBE) is normally expressed in the embryonic yolk sac: two epsilon chains together with two zeta chains (an alpha-like globin) constitute the embryonic hemoglobin Hb Gower I; two epsilon chains together with two alpha chains form the embryonic Hb Gower II. Both of these embryonic hemoglobins are normally supplanted by fetal, and later, adult hemoglobin. The five beta-like globin genes are found within a 45 kb cluster on chromosome 11 in the following order: 5'-epsilon - G-gamma - A-gamma - delta - beta-3'&lt;ref&gt;{{cite web | title = Entrez Gene: HBE1 hemoglobin, epsilon 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3046| accessdate = }}&lt;/ref&gt;<br /> }}<br /> ==See also==<br /> *[[hemoglobin]]<br /> *[[Human β-globin locus]]<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Clegg JB |title=Embryonic hemoglobin: sequence of the epsilon and zeta chains. |journal=Tex. Rep. Biol. Med. |volume=40 |issue= |pages= 23–8 |year= 1982 |pmid= 6172865 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi=10.3109/10409239509085142 }}<br /> *{{cite journal | author=Chang JC, Kan YW |title=beta 0 thalassemia, a nonsense mutation in man. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=76 |issue= 6 |pages= 2886–9 |year= 1979 |pmid= 88735 |doi=10.1073/pnas.76.6.2886 }}<br /> *{{cite journal | author=Proudfoot NJ, Baralle FE |title=Molecular cloning of human epsilon-globin gene. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=76 |issue= 11 |pages= 5435–9 |year= 1980 |pmid= 160554 |doi=10.1073/pnas.76.11.5435 }}<br /> *{{cite journal | author=Proudfoot NJ, Brownlee GG |title=3' non-coding region sequences in eukaryotic messenger RNA. |journal=Nature |volume=263 |issue= 5574 |pages= 211–4 |year= 1976 |pmid= 822353 |doi=10.1038/263211a0 }}<br /> *{{cite journal | author=Marotta CA, Forget BG, Cohne-Solal M, ''et al.'' |title=Human beta-globin messenger RNA. I. Nucleotide sequences derived from complementary RNA. |journal=J. Biol. Chem. |volume=252 |issue= 14 |pages= 5019–31 |year= 1977 |pmid= 873928 |doi= }}<br /> *{{cite journal | author=Gelinas R, Endlich B, Pfeiffer C, ''et al.'' |title=G to A substitution in the distal CCAAT box of the A gamma-globin gene in Greek hereditary persistence of fetal haemoglobin. |journal=Nature |volume=313 |issue= 6000 |pages= 323–5 |year= 1985 |pmid= 2578619 |doi=10.1038/313323a0 }}<br /> *{{cite journal | author=Collins FS, Metherall JE, Yamakawa M, ''et al.'' |title=A point mutation in the A gamma-globin gene promoter in Greek hereditary persistence of fetal haemoglobin. |journal=Nature |volume=313 |issue= 6000 |pages= 325–6 |year= 1985 |pmid= 2578620 |doi=10.1038/313325a0 }}<br /> *{{cite journal | author=Lang KM, Spritz RA |title=Cloning specific complete polyadenylylated 3'-terminal cDNA segments. |journal=Gene |volume=33 |issue= 2 |pages= 191–6 |year= 1985 |pmid= 2581851 |doi=10.1016/0378-1119(85)90093-9 }}<br /> *{{cite journal | author=Ley TJ, Maloney KA, Gordon JI, Schwartz AL |title=Globin gene expression in erythroid human fetal liver cells. |journal=J. Clin. Invest. |volume=83 |issue= 3 |pages= 1032–8 |year= 1989 |pmid= 2921315 |doi=10.1172/JCI113944 }}<br /> *{{cite journal | author=Chabot B, Black DL, LeMaster DM, Steitz JA |title=The 3' splice site of pre-messenger RNA is recognized by a small nuclear ribonucleoprotein. |journal=Science |volume=230 |issue= 4732 |pages= 1344–9 |year= 1986 |pmid= 2933810 |doi=10.1126/science.2933810 }}<br /> *{{cite journal | author=Engelke DR, Hoener PA, Collins FS |title=Direct sequencing of enzymatically amplified human genomic DNA. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=85 |issue= 2 |pages= 544–8 |year= 1988 |pmid= 3267215 |doi=10.1073/pnas.85.2.544 }}<br /> *{{cite journal | author=Fei YJ, Stoming TA, Efremov GD, ''et al.'' |title=Beta-thalassemia due to a T----A mutation within the ATA box. |journal=Biochem. Biophys. Res. Commun. |volume=153 |issue= 2 |pages= 741–7 |year= 1988 |pmid= 3382401 |doi=10.1016/S0006-291X(88)81157-4 }}<br /> *{{cite journal | author=Prchal JT, Cashman DP, Kan YW |title=Hemoglobin Long Island is caused by a single mutation (adenine to cytosine) resulting in a failure to cleave amino-terminal methionine. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=83 |issue= 1 |pages= 24–7 |year= 1986 |pmid= 3455755 |doi=10.1073/pnas.83.1.24 }}<br /> *{{cite journal | author=van Santen VL, Spritz RA |title=mRNA precursor splicing in vivo: sequence requirements determined by deletion analysis of an intervening sequence. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=82 |issue= 9 |pages= 2885–9 |year= 1985 |pmid= 3857622 |doi=10.1073/pnas.82.9.2885 }}<br /> *{{cite journal | author=Ruskin B, Greene JM, Green MR |title=Cryptic branch point activation allows accurate in vitro splicing of human beta-globin intron mutants. |journal=Cell |volume=41 |issue= 3 |pages= 833–44 |year= 1985 |pmid= 3879973 |doi=10.1016/S0092-8674(85)80064-7 }}<br /> *{{cite journal | author=Tuan D, Solomon W, Li Q, London IM |title=The &quot;beta-like-globin&quot; gene domain in human erythroid cells. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=82 |issue= 19 |pages= 6384–8 |year= 1985 |pmid= 3879975 |doi=10.1073/pnas.82.19.6384 }}<br /> *{{cite journal | author=Orkin SH, Antonarakis SE, Kazazian HH |title=Base substitution at position -88 in a beta-thalassemic globin gene. Further evidence for the role of distal promoter element ACACCC. |journal=J. Biol. Chem. |volume=259 |issue= 14 |pages= 8679–81 |year= 1984 |pmid= 6086605 |doi= }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=3046}}<br /> <br /> {{NLM content}}<br /> {{protein-stub}}<br /> <br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}<br /> {{Hemeproteins}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=%CE%94-Globin&diff=100434308 Δ-Globin 2009-07-29T04:54:26Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>{{PBB|geneid=3045}}<br /> '''Hemoglobin, delta''', also known as '''HBD''', is a human [[gene]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The delta (HBD) and beta (HBB) genes are normally expressed in the adult: two alpha chains plus two beta chains constitute HbA, which in normal adult life comprises about 97% of the total hemoglobin. Two alpha chains plus two delta chains constitute HbA-2, which with HbF comprises the remaining 3% of adult hemoglobin. Five beta-like globin genes are found within a 45 kb cluster on chromosome 11 in the following order: 5'-epsilon--Ggamma--Agamma--delta--beta-3'. Mutations in the delta-globin gene are associated with beta-thalassemia.&lt;ref&gt;{{cite web | title = Entrez Gene: HBD hemoglobin, delta| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3045| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==See also==<br /> * [[Hemoglobin]]<br /> * [[Human β-globin locus]]<br /> * [[Thalassemia]]<br /> <br /> ==References==<br /> {{reflist}}<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Schillirò G, Russo-Mancuso G, Dibenedetto SP, ''et al.'' |title=Six rare hemoglobin variants found in Sicily. |journal=Hemoglobin |volume=15 |issue= 5 |pages= 431–7 |year= 1992 |pmid= 1802885 |doi= }}<br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Collins FS, Weissman SM |title=The molecular genetics of human hemoglobin. |journal=Prog. Nucleic Acid Res. Mol. Biol. |volume=31 |issue= |pages= 315–462 |year= 1985 |pmid= 6397774 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi= }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=3045}}<br /> <br /> {{protein-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}<br /> {{Hemeproteins}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=%CE%92-Globin&diff=99488708 Β-Globin 2009-07-29T04:52:10Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>{{redirect|HBB}}<br /> {{PBB|geneid=3043}}<br /> Beta globin ('''HBB''', β-globin) is a protein that, along with alpha globin ([[HBA1|HBA]]), makes up the most common form of [[hemoglobin]] in adult humans.&lt;ref name = &quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HBB hemoglobin, beta| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3043| accessdate = }}&lt;/ref&gt; The normal adult hemoglobin [[tetramer]] consists of two alpha chains and two beta chains.<br /> <br /> ==Gene locus==<br /> The gene is located in the [[Human β-globin locus|β-globin locus]]. [[Gene expression|Expression]] of beta globin and the neighboring globins in the β-globin locus is controlled by single [[locus control region]] (LCR).&lt;ref name=&quot;pmid11895428&quot;&gt;{{cite journal | author = Levings PP, Bungert J | title = The human beta-globin locus control region | journal = Eur. J. Biochem. | volume = 269 | issue = 6 | pages = 1589–99 | year = 2002 | month = March | pmid = 11895428 | doi = 10.1046/j.1432-1327.2002.02797.x | url = }}&lt;/ref&gt; The order of the genes in the beta-globin cluster is 5' - [[HBE1|epsilon]] – [[HBG2|gamma-G]] – [[HBG1|gamma-A]] – [[HBD|delta]] – '''beta''' - 3'.&lt;ref name = &quot;entrez&quot;/&gt;<br /> <br /> ==Disease linkage==<br /> Mutant beta globin is responsible for the sickling of red blood cells seen in [[sickle cell anemia]]. Absence of beta chain causes [[Thalassemia#Beta_.28.CE.B2.29_thalassemias|beta-zero-thalassemia]]. Reduced amounts of detectable beta globin causes beta-plus-thalassemia.&lt;ref name = &quot;entrez&quot;/&gt;<br /> <br /> ==See also==<br /> [[Human β-globin locus]]<br /> <br /> ==Interactions==<br /> HBB has been shown to [[Protein-protein_interaction|interact]] with [[Hemoglobin, alpha 1]].&lt;ref name=pmid16169070&gt;{{cite journal | quotes = yes |last=Stelzl |first=Ulrich |authorlink= |coauthors=Worm Uwe, Lalowski Maciej, Haenig Christian, Brembeck Felix H, Goehler Heike, Stroedicke Martin, Zenkner Martina, Schoenherr Anke, Koeppen Susanne, Timm Jan, Mintzlaff Sascha, Abraham Claudia, Bock Nicole, Kietzmann Silvia, Goedde Astrid, Toksöz Engin, Droege Anja, Krobitsch Sylvia, Korn Bernhard, Birchmeier Walter, Lehrach Hans, Wanker Erich E |year=[[2005]]|month=Sep. |title=A human protein-protein interaction network: a resource for annotating the proteome |journal=Cell |volume=122 |issue=6 |pages=957-68 |publisher= |location = United States| issn = 0092-8674| pmid = 16169070| pmid = 16179252 |doi = 10.1016/j.cell.2005.08.029 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt;&lt;ref name=pmid6644819&gt;{{cite journal | quotes = yes |last=Shaanan |first=B |authorlink= |year=[[1983]]|month=Nov. |title=Structure of human oxyhaemoglobin at 2.1 A resolution |journal=J. Mol. Biol. |volume=171 |issue=1 |pages=31-59 |publisher= |location = ENGLAND| issn = 0022-2836| pmid = 6644819 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt;<br /> <br /> ==References==<br /> {{reflist}}<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi=10.3109/10409239509085142 }}<br /> *{{cite journal | author=Salzano AM, Carbone V, Pagano L, ''et al.'' |title=Hb Vila Real [beta36(C2)Pro--&gt;His] in Italy: characterization of the amino acid substitution and the DNA mutation. |journal=Hemoglobin |volume=26 |issue= 1 |pages= 21–31 |year= 2002 |pmid= 11939509 |doi=10.1081/HEM-120002937 }}<br /> *{{cite journal | author=Frischknecht H, Dutly F |title=A 65 bp duplication/insertion in exon II of the beta globin gene causing beta0-thalassemia. |journal=Haematologica |volume=92 |issue= 3 |pages= 423–4 |year= 2007 |pmid= 17339197 |doi=10.3324/haematol.10785 }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=3043}}<br /> <br /> {{gene-11-stub}}<br /> <br /> [[Category:Proteins]]<br /> <br /> [[hi:बीटा-ग्लोबिन]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = no<br /> | update_citations = yes<br /> }}<br /> {{Hemeproteins}}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Histon_H2AX&diff=92071900 Histon H2AX 2009-07-29T04:49:32Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>{{PBB|geneid=3014}}<br /> '''H2AFX''' is one of several [[gene]]s coding for [[histone H2A]]. In humans and other [[eukaryotes]], the [[DNA]] is wrapped around [[histone]]-groups, consisting of [[core histones]] H2A, H2B, H3 and H4. Thus, the H2AFX contributes to the histone-formation and therefore the structure of DNA.<br /> <br /> H2AX becomes phosphorylated on serine 139, then called gamma-H2AX, as a reaction on DNA Double-strand breaks (DSB). The kinases of the PIKK-family ([[Ataxia telangiectasia mutated]], ATR and DNA-PKcs) are responsible for this phosphorylation, especially ATM. The modification can happen accidentally during replication fork collapse or in the response to ionizing radiation but also during controlled physiological processes such as V(D)J recombination. Gamma-H2AX is a sensitive target for looking at DSBs in cells. The role of the phosphorylated form of the histone in DNA repair is under discussion but it is known that because of the modification the DNA becomes less condensed. Delivering space for the recruitment of proteins necessary during repair of DSBs.<br /> <br /> ==Interactions==<br /> H2AFX has been shown to [[Protein-protein_interaction|interact]] with [[MDC1]],&lt;ref name=pmid12607005&gt;{{cite journal | quotes = yes |last=Stewart |first=Grant S |authorlink= |coauthors=Wang Bin, Bignell Colin R, Taylor A Malcolm R, Elledge Stephen J |year=[[2003]]|month=Feb. |title=MDC1 is a mediator of the mammalian DNA damage checkpoint |journal=[[Nature (journal)|Nature]] |volume=421 |issue=6926 |pages=961-6 |publisher= |location = England| issn = 0028-0836| pmid = 12607005 |doi = 10.1038/nature01446 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt;&lt;ref name=pmid14519663&gt;{{cite journal | quotes = yes |last=Xu |first=Xingzhi |authorlink= |coauthors=Stern David F |year=[[2003]]|month=Oct. |title=NFBD1/MDC1 regulates ionizing radiation-induced focus formation by DNA checkpoint signaling and repair factors |journal=FASEB J. |volume=17 |issue=13 |pages=1842-8 |publisher= |location = United States| issn = | pmid = 14519663 |doi = 10.1096/fj.03-0310com | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt; [[Nibrin]],&lt;ref name=pmid12419185&gt;{{cite journal | quotes = yes |last=Kobayashi |first=Junya |authorlink= |coauthors=Tauchi Hiroshi, Sakamoto Shuichi, Nakamura Asako, Morishima Ken-ichi, Matsuura Shinya, Kobayashi Toshiko, Tamai Katsuyuki, Tanimoto Keiji, Komatsu Kenshi |year=[[2002]]|month=Oct. |title=NBS1 localizes to gamma-H2AX foci through interaction with the FHA/BRCT domain |journal=Curr. Biol. |volume=12 |issue=21 |pages=1846-51 |publisher= |location = England| issn = 0960-9822| pmid = 12419185 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt; [[TP53BP1]],&lt;ref name=pmid15364958&gt;{{cite journal | quotes = yes |last=Sengupta |first=Sagar |authorlink= |coauthors=Robles Ana I, Linke Steven P, Sinogeeva Natasha I, Zhang Ran, Pedeux Remy, Ward Irene M, Celeste Arkady, Nussenzweig André, Chen Junjie, Halazonetis Thanos D, Harris Curtis C |year=[[2004]]|month=Sep. |title=Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest |journal=J. Cell Biol. |volume=166 |issue=6 |pages=801-13 |publisher= |location = United States| issn = 0021-9525| pmid = 15364958 |doi = 10.1083/jcb.200405128 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt;&lt;ref name=pmid12447390&gt;{{cite journal | quotes = yes |last=Fernandez-Capetillo |first=Oscar |authorlink= |coauthors=Chen Hua-Tang, Celeste Arkady, Ward Irene, Romanienko Peter J, Morales Julio C, Naka Kazuhito, Xia Zhenfang, Camerini-Otero R Daniel, Motoyama Noboru, Carpenter Phillip B, Bonner William M, Chen Junjie, Nussenzweig André |year=[[2002]]|month=Dec. |title=DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1 |journal=Nat. Cell Biol. |volume=4 |issue=12 |pages=993-7 |publisher= |location = England| issn = 1465-7392| pmid = 12447390| pmid = 12461529 |doi = 10.1038/ncb884 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt;&lt;ref name=pmid12697768&gt;{{cite journal | quotes = yes |last=Ward |first=Irene M |authorlink= |coauthors=Minn Kay, Jorda Katherine G, Chen Junjie |year=[[2003]]|month=May. |title=Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX |journal=J. Biol. Chem. |volume=278 |issue=22 |pages=19579-82 |publisher= |location = United States| issn = 0021-9258| pmid = 12697768 |doi = 10.1074/jbc.C300117200 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt; [[Bloom syndrome protein]],&lt;ref name=pmid15364958/&gt; [[BRCA1]]&lt;ref name=pmid12485996&gt;{{cite journal | quotes = yes |last=Mallery |first=Donna L |authorlink= |coauthors=Vandenberg Cassandra J, Hiom Kevin |year=[[2002]]|month=Dec. |title=Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains |journal=EMBO J. |volume=21 |issue=24 |pages=6755-62 |publisher= |location = England| issn = 0261-4189| pmid = 12485996 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt;&lt;ref name=pmid10959836&gt;{{cite journal | quotes = yes |last=Paull |first=T T |authorlink= |coauthors=Rogakou E P, Yamazaki V, Kirchgessner C U, Gellert M, Bonner W M |year=|month= |title=A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage |journal=Curr. Biol. |volume=10 |issue=15 |pages=886-95 |publisher= |location = ENGLAND| issn = 0960-9822| pmid = 10959836 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt;&lt;ref name=pmid11927591&gt;{{cite journal | quotes = yes |last=Chen |first=Angus |authorlink= |coauthors=Kleiman Frida E, Manley James L, Ouchi Toru, Pan Zhen-Qiang |year=[[2002]]|month=Jun. |title=Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase |journal=J. Biol. Chem. |volume=277 |issue=24 |pages=22085-92 |publisher= |location = United States| issn = 0021-9258| pmid = 11927591 |doi = 10.1074/jbc.M201252200 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt; and [[BARD1]].&lt;ref name=pmid12485996/&gt;&lt;ref name=pmid11927591/&gt;<br /> <br /> ==References==<br /> {{reflist}}<br /> *[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=3014 ncbi]<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Redon C, Pilch D, Rogakou E, ''et al.'' |title=Histone H2A variants H2AX and H2AZ. |journal=Curr. Opin. Genet. Dev. |volume=12 |issue= 2 |pages= 162–9 |year= 2002 |pmid= 11893489 |doi=10.1016/S0959-437X(02)00282-4 }}<br /> *{{cite journal | author=Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A |title=H2AX: the histone guardian of the genome. |journal=DNA Repair (Amst.) |volume=3 |issue= 8-9 |pages= 959–67 |year= 2005 |pmid= 15279782 |doi= 10.1016/j.dnarep.2004.03.024 }}<br /> *{{cite journal | author=Mannironi C, Bonner WM, Hatch CL |title=H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3' processing signals. |journal=Nucleic Acids Res. |volume=17 |issue= 22 |pages= 9113–26 |year= 1990 |pmid= 2587254 |doi=10.1093/nar/17.22.9113 }}<br /> *{{cite journal | author=Banerjee S, Smallwood A, Hultén M |title=ATP-dependent reorganization of human sperm nuclear chromatin. |journal=J. Cell. Sci. |volume=108 ( Pt 2) |issue= |pages= 755–65 |year= 1995 |pmid= 7769017 |doi= }}<br /> *{{cite journal | author=Ivanova VS, Hatch CL, Bonner WM |title=Characterization of the human histone H2A.X gene. Comparison of its promoter with other H2A gene promoters. |journal=J. Biol. Chem. |volume=269 |issue= 39 |pages= 24189–94 |year= 1994 |pmid= 7929075 |doi= }}<br /> *{{cite journal | author=Ivanova VS, Zimonjic D, Popescu N, Bonner WM |title=Chromosomal localization of the human histone H2A.X gene to 11q23.2-q23.3 by fluorescence in situ hybridization. |journal=Hum. Genet. |volume=94 |issue= 3 |pages= 303–6 |year= 1994 |pmid= 8076949 |doi=10.1007/BF00208289 }}<br /> *{{cite journal | author=Rogakou EP, Pilch DR, Orr AH, ''et al.'' |title=DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. |journal=J. Biol. Chem. |volume=273 |issue= 10 |pages= 5858–68 |year= 1998 |pmid= 9488723 |doi=10.1074/jbc.273.10.5858 }}<br /> *{{cite journal | author=El Kharroubi A, Piras G, Zensen R, Martin MA |title=Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. |journal=Mol. Cell. Biol. |volume=18 |issue= 5 |pages= 2535–44 |year= 1998 |pmid= 9566873 |doi= }}<br /> *{{cite journal | author=Rogakou EP, Boon C, Redon C, Bonner WM |title=Megabase chromatin domains involved in DNA double-strand breaks in vivo. |journal=J. Cell Biol. |volume=146 |issue= 5 |pages= 905–16 |year= 1999 |pmid= 10477747 |doi=10.1083/jcb.146.5.905 }}<br /> *{{cite journal | author=Rogakou EP, Nieves-Neira W, Boon C, ''et al.'' |title=Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. |journal=J. Biol. Chem. |volume=275 |issue= 13 |pages= 9390–5 |year= 2000 |pmid= 10734083 |doi=10.1074/jbc.275.13.9390 }}<br /> *{{cite journal | author=Paull TT, Rogakou EP, Yamazaki V, ''et al.'' |title=A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. |journal=Curr. Biol. |volume=10 |issue= 15 |pages= 886–95 |year= 2001 |pmid= 10959836 |doi=10.1016/S0960-9822(00)00610-2 }}<br /> *{{cite journal | author=Deng L, de la Fuente C, Fu P, ''et al.'' |title=Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. |journal=Virology |volume=277 |issue= 2 |pages= 278–95 |year= 2001 |pmid= 11080476 |doi= 10.1006/viro.2000.0593 }}<br /> *{{cite journal | author=Chen HT, Bhandoola A, Difilippantonio MJ, ''et al.'' |title=Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. |journal=Science |volume=290 |issue= 5498 |pages= 1962–5 |year= 2000 |pmid= 11110662 |doi=10.1126/science.290.5498.1962 }}<br /> *{{cite journal | author=Chadwick BP, Willard HF |title=Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. |journal=Hum. Mol. Genet. |volume=10 |issue= 10 |pages= 1101–13 |year= 2001 |pmid= 11331621 |doi=10.1093/hmg/10.10.1101 }}<br /> *{{cite journal | author=Burma S, Chen BP, Murphy M, ''et al.'' |title=ATM phosphorylates histone H2AX in response to DNA double-strand breaks. |journal=J. Biol. Chem. |volume=276 |issue= 45 |pages= 42462–7 |year= 2001 |pmid= 11571274 |doi= 10.1074/jbc.C100466200 }}<br /> *{{cite journal | author=Ward IM, Chen J |title=Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. |journal=J. Biol. Chem. |volume=276 |issue= 51 |pages= 47759–62 |year= 2002 |pmid= 11673449 |doi= 10.1074/jbc.C100569200 }}<br /> *{{cite journal | author=Deng L, Wang D, de la Fuente C, ''et al.'' |title=Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA. |journal=Virology |volume=289 |issue= 2 |pages= 312–26 |year= 2001 |pmid= 11689053 |doi= 10.1006/viro.2001.1129 }}<br /> *{{cite journal | author=Chen A, Kleiman FE, Manley JL, ''et al.'' |title=Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. |journal=J. Biol. Chem. |volume=277 |issue= 24 |pages= 22085–92 |year= 2002 |pmid= 11927591 |doi= 10.1074/jbc.M201252200 }}<br /> *{{cite journal | author=Zhu H, Hunter TC, Pan S, ''et al.'' |title=Residue-specific mass signatures for the efficient detection of protein modifications by mass spectrometry. |journal=Anal. Chem. |volume=74 |issue= 7 |pages= 1687–94 |year= 2003 |pmid= 12033261 |doi=10.1021/ac010853p }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=3014}}<br /> <br /> {{biochemistry-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hom%C3%B6oboxprotein_DLX-5&diff=95284531 Homöoboxprotein DLX-5 2009-07-28T01:01:45Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>{{PBB|geneid=1749}}<br /> '''Distal-less homeobox 5''', also known as '''DLX5''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX5 distal-less homeobox 5| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1749| accessdate = }}&lt;/ref&gt;<br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = This gene encodes a member of a homeobox transcription factor gene family similar to the Drosophila distal-less gene. The encoded protein may play a role in bone development and fracture healing. Mutation in this gene, which is located in a tail-to-tail configuration with another member of the family on the long arm of chromosome 7, may be associated with split-hand/split-foot malformation.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX5 distal-less homeobox 5| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1749| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==Interactions==<br /> DLX5 has been shown to [[Protein-protein_interaction|interact]] with [[DLX2]],&lt;ref name=pmid9111364&gt;{{cite journal | quotes = yes |last=Zhang |first=H |authorlink= |coauthors=Hu G, Wang H, Sciavolino P, Iler N, Shen M M, Abate-Shen C |year=[[1997]]|month=May. |title=Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism |journal=Mol. Cell. Biol. |volume=17 |issue=5 |pages=2920-32 |publisher= |location = UNITED STATES| issn = 0270-7306| pmid = 9111364 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt; [[MSX1]]&lt;ref name=pmid9111364/&gt; and [[Msh homeobox 2]].&lt;ref name=pmid9111364/&gt;<br /> <br /> ==References==<br /> {{reflist}}<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Bapat S, Galande S |title=Association by guilt: identification of DLX5 as a target for MeCP2 provides a molecular link between genomic imprinting and Rett syndrome. |journal=Bioessays |volume=27 |issue= 7 |pages= 676–80 |year= 2005 |pmid= 15954098 |doi= 10.1002/bies.20266 }}<br /> *{{cite journal | author=Simeone A, Acampora D, Pannese M, ''et al.'' |title=Cloning and characterization of two members of the vertebrate Dlx gene family. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 6 |pages= 2250–4 |year= 1994 |pmid= 7907794 |doi=10.1073/pnas.91.6.2250 }}<br /> *{{cite journal | author=Scherer SW, Poorkaj P, Massa H, ''et al.'' |title=Physical mapping of the split hand/split foot locus on chromosome 7 and implication in syndromic ectrodactyly. |journal=Hum. Mol. Genet. |volume=3 |issue= 8 |pages= 1345–54 |year= 1995 |pmid= 7987313 |doi=10.1093/hmg/3.8.1345 }}<br /> *{{cite journal | author=Hillier LD, Lennon G, Becker M, ''et al.'' |title=Generation and analysis of 280,000 human expressed sequence tags. |journal=Genome Res. |volume=6 |issue= 9 |pages= 807–28 |year= 1997 |pmid= 8889549 |doi=10.1101/gr.6.9.807 }}<br /> *{{cite journal | author=Zhang H, Hu G, Wang H, ''et al.'' |title=Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. |journal=Mol. Cell. Biol. |volume=17 |issue= 5 |pages= 2920–32 |year= 1997 |pmid= 9111364 |doi= }}<br /> *{{cite journal | author=Newberry EP, Latifi T, Towler DA |title=The RRM domain of MINT, a novel Msx2 binding protein, recognizes and regulates the rat osteocalcin promoter. |journal=Biochemistry |volume=38 |issue= 33 |pages= 10678–90 |year= 1999 |pmid= 10451362 |doi= 10.1021/bi990967j }}<br /> *{{cite journal | author=Eisenstat DD, Liu JK, Mione M, ''et al.'' |title=DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. |journal=J. Comp. Neurol. |volume=414 |issue= 2 |pages= 217–37 |year= 1999 |pmid= 10516593 |doi=10.1002/(SICI)1096-9861(19991115)414:2&lt;217::AID-CNE6&gt;3.0.CO;2-I }}<br /> *{{cite journal | author=Masuda Y, Sasaki A, Shibuya H, ''et al.'' |title=Dlxin-1, a novel protein that binds Dlx5 and regulates its transcriptional function. |journal=J. Biol. Chem. |volume=276 |issue= 7 |pages= 5331–8 |year= 2001 |pmid= 11084035 |doi= 10.1074/jbc.M008590200 }}<br /> *{{cite journal | author=Yu G, Zerucha T, Ekker M, Rubenstein JL |title=Evidence that GRIP, a PDZ-domain protein which is expressed in the embryonic forebrain, co-activates transcription with DLX homeodomain proteins. |journal=Brain Res. Dev. Brain Res. |volume=130 |issue= 2 |pages= 217–30 |year= 2002 |pmid= 11675124 |doi=10.1016/S0165-3806(01)00239-5 }}<br /> *{{cite journal | author=Sasaki A, Masuda Y, Iwai K, ''et al.'' |title=A RING finger protein Praja1 regulates Dlx5-dependent transcription through its ubiquitin ligase activity for the Dlx/Msx-interacting MAGE/Necdin family protein, Dlxin-1. |journal=J. Biol. Chem. |volume=277 |issue= 25 |pages= 22541–6 |year= 2002 |pmid= 11959851 |doi= 10.1074/jbc.M109728200 }}<br /> *{{cite journal | author=Willis DM, Loewy AP, Charlton-Kachigian N, ''et al.'' |title=Regulation of osteocalcin gene expression by a novel Ku antigen transcription factor complex. |journal=J. Biol. Chem. |volume=277 |issue= 40 |pages= 37280–91 |year= 2002 |pmid= 12145306 |doi= 10.1074/jbc.M206482200 }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Scherer SW, Cheung J, MacDonald JR, ''et al.'' |title=Human chromosome 7: DNA sequence and biology. |journal=Science |volume=300 |issue= 5620 |pages= 767–72 |year= 2003 |pmid= 12690205 |doi= 10.1126/science.1083423 }}<br /> *{{cite journal | author=Okita C, Meguro M, Hoshiya H, ''et al.'' |title=A new imprinted cluster on the human chromosome 7q21-q31, identified by human-mouse monochromosomal hybrids. |journal=Genomics |volume=81 |issue= 6 |pages= 556–9 |year= 2004 |pmid= 12782124 |doi=10.1016/S0888-7543(03)00052-1 }}<br /> *{{cite journal | author=Hillier LW, Fulton RS, Fulton LA, ''et al.'' |title=The DNA sequence of human chromosome 7. |journal=Nature |volume=424 |issue= 6945 |pages= 157–64 |year= 2003 |pmid= 12853948 |doi= 10.1038/nature01782 }}<br /> *{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=Rual JF, Venkatesan K, Hao T, ''et al.'' |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}<br /> *{{cite journal | author=Kimura K, Wakamatsu A, Suzuki Y, ''et al.'' |title=Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. |journal=Genome Res. |volume=16 |issue= 1 |pages= 55–65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=1749}}<br /> <br /> == External links ==<br /> * {{MeshName|DLX5+protein,+human}}<br /> <br /> <br /> {{gene-7-stub}}<br /> {{NLM content}}<br /> {{Transcription factors|g3}}<br /> [[Category:Transcription factors]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = no<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hom%C3%B6oboxprotein_DLX-2&diff=95195050 Homöoboxprotein DLX-2 2009-07-28T01:01:23Z <p>ProteinBoxBot: Automated update/addition of PDB image Gallery.</p> <hr /> <div>{{PBB|geneid=1746}}<br /> '''Distal-less homeobox 2''', also known as '''DLX2''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX2 distal-less homeobox 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1746| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Many vertebrate homeo box-containing genes have been identified on the basis of their sequence similarity with Drosophila developmental genes. Members of the Dlx gene family contain a homeobox that is related to that of Distal-less (Dll), a gene expressed in the head and limbs of the developing fruit fly. The Distal-less (Dlx) family of genes comprises at least 6 different members, DLX1-DLX6. The DLX proteins are postulated to play a role in forebrain and craniofacial development. This gene is located in a tail-to-tail configuration with another member of the gene family on the long arm of chromosome 2.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX2 distal-less homeobox 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1746| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==Interactions==<br /> DLX2 has been shown to [[Protein-protein_interaction|interact]] with [[DLX5]],&lt;ref name=pmid9111364&gt;{{cite journal | quotes = yes |last=Zhang |first=H |authorlink= |coauthors=Hu G, Wang H, Sciavolino P, Iler N, Shen M M, Abate-Shen C |year=[[1997]]|month=May. |title=Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism |journal=Mol. Cell. Biol. |volume=17 |issue=5 |pages=2920-32 |publisher= |location = UNITED STATES| issn = 0270-7306| pmid = 9111364 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}&lt;/ref&gt; [[MSX1]]&lt;ref name=pmid9111364/&gt; and [[Msh homeobox 2]].&lt;ref name=pmid9111364/&gt;<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Harris SE, Guo D, Harris MA, ''et al.'' |title=Transcriptional regulation of BMP-2 activated genes in osteoblasts using gene expression microarray analysis: role of Dlx2 and Dlx5 transcription factors. |journal=Front. Biosci. |volume=8 |issue= |pages= s1249–65 |year= 2003 |pmid= 12957859 |doi=10.2741/1170 }}<br /> *{{cite journal | author=Ozçelik T, Porteus MH, Rubenstein JL, Francke U |title=DLX2 (TES1), a homeobox gene of the Distal-less family, assigned to conserved regions on human and mouse chromosomes 2. |journal=Genomics |volume=13 |issue= 4 |pages= 1157–61 |year= 1992 |pmid= 1354641 |doi=10.1016/0888-7543(92)90031-M }}<br /> *{{cite journal | author=Qiu M, Bulfone A, Martinez S, ''et al.'' |title=Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. |journal=Genes Dev. |volume=9 |issue= 20 |pages= 2523–38 |year= 1995 |pmid= 7590232 |doi=10.1101/gad.9.20.2523 }}<br /> *{{cite journal | author=Selski DJ, Thomas NE, Coleman PD, Rogers KE |title=The human brain homeogene, DLX-2: cDNA sequence and alignment with the murine homologue. |journal=Gene |volume=132 |issue= 2 |pages= 301–3 |year= 1993 |pmid= 7901126 |doi=10.1016/0378-1119(93)90212-L }}<br /> *{{cite journal | author=Simeone A, Acampora D, Pannese M, ''et al.'' |title=Cloning and characterization of two members of the vertebrate Dlx gene family. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 6 |pages= 2250–4 |year= 1994 |pmid= 7907794 |doi=10.1073/pnas.91.6.2250 }}<br /> *{{cite journal | author=McGuinness T, Porteus MH, Smiga S, ''et al.'' |title=Sequence, organization, and transcription of the Dlx-1 and Dlx-2 locus. |journal=Genomics |volume=35 |issue= 3 |pages= 473–85 |year= 1996 |pmid= 8812481 |doi= 10.1006/geno.1996.0387 }}<br /> *{{cite journal | author=Zhang H, Hu G, Wang H, ''et al.'' |title=Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. |journal=Mol. Cell. Biol. |volume=17 |issue= 5 |pages= 2920–32 |year= 1997 |pmid= 9111364 |doi= }}<br /> *{{cite journal | author=Yu G, Zerucha T, Ekker M, Rubenstein JL |title=Evidence that GRIP, a PDZ-domain protein which is expressed in the embryonic forebrain, co-activates transcription with DLX homeodomain proteins. |journal=Brain Res. Dev. Brain Res. |volume=130 |issue= 2 |pages= 217–30 |year= 2002 |pmid= 11675124 |doi=10.1016/S0165-3806(01)00239-5 }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=Espinoza HM, Ganga M, Vadlamudi U, ''et al.'' |title=Protein kinase C phosphorylation modulates N- and C-terminal regulatory activities of the PITX2 homeodomain protein. |journal=Biochemistry |volume=44 |issue= 10 |pages= 3942–54 |year= 2005 |pmid= 15751970 |doi= 10.1021/bi048362x }}<br /> }}<br /> {{refend}}<br /> {{PDB Gallery|geneid=1746}}<br /> <br /> {{gene-2-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hom%C3%B6oboxprotein_DLX-2&diff=95195046 Homöoboxprotein DLX-2 2008-07-10T11:11:07Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=1746}}<br /> '''Distal-less homeobox 2''', also known as '''DLX2''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX2 distal-less homeobox 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1746| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Many vertebrate homeo box-containing genes have been identified on the basis of their sequence similarity with Drosophila developmental genes. Members of the Dlx gene family contain a homeobox that is related to that of Distal-less (Dll), a gene expressed in the head and limbs of the developing fruit fly. The Distal-less (Dlx) family of genes comprises at least 6 different members, DLX1-DLX6. The DLX proteins are postulated to play a role in forebrain and craniofacial development. This gene is located in a tail-to-tail configuration with another member of the gene family on the long arm of chromosome 2.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX2 distal-less homeobox 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1746| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Harris SE, Guo D, Harris MA, ''et al.'' |title=Transcriptional regulation of BMP-2 activated genes in osteoblasts using gene expression microarray analysis: role of Dlx2 and Dlx5 transcription factors. |journal=Front. Biosci. |volume=8 |issue= |pages= s1249–65 |year= 2003 |pmid= 12957859 |doi= }}<br /> *{{cite journal | author=Ozçelik T, Porteus MH, Rubenstein JL, Francke U |title=DLX2 (TES1), a homeobox gene of the Distal-less family, assigned to conserved regions on human and mouse chromosomes 2. |journal=Genomics |volume=13 |issue= 4 |pages= 1157–61 |year= 1992 |pmid= 1354641 |doi= }}<br /> *{{cite journal | author=Qiu M, Bulfone A, Martinez S, ''et al.'' |title=Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. |journal=Genes Dev. |volume=9 |issue= 20 |pages= 2523–38 |year= 1995 |pmid= 7590232 |doi= }}<br /> *{{cite journal | author=Selski DJ, Thomas NE, Coleman PD, Rogers KE |title=The human brain homeogene, DLX-2: cDNA sequence and alignment with the murine homologue. |journal=Gene |volume=132 |issue= 2 |pages= 301–3 |year= 1993 |pmid= 7901126 |doi= }}<br /> *{{cite journal | author=Simeone A, Acampora D, Pannese M, ''et al.'' |title=Cloning and characterization of two members of the vertebrate Dlx gene family. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 6 |pages= 2250–4 |year= 1994 |pmid= 7907794 |doi= }}<br /> *{{cite journal | author=McGuinness T, Porteus MH, Smiga S, ''et al.'' |title=Sequence, organization, and transcription of the Dlx-1 and Dlx-2 locus. |journal=Genomics |volume=35 |issue= 3 |pages= 473–85 |year= 1996 |pmid= 8812481 |doi= 10.1006/geno.1996.0387 }}<br /> *{{cite journal | author=Zhang H, Hu G, Wang H, ''et al.'' |title=Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. |journal=Mol. Cell. Biol. |volume=17 |issue= 5 |pages= 2920–32 |year= 1997 |pmid= 9111364 |doi= }}<br /> *{{cite journal | author=Yu G, Zerucha T, Ekker M, Rubenstein JL |title=Evidence that GRIP, a PDZ-domain protein which is expressed in the embryonic forebrain, co-activates transcription with DLX homeodomain proteins. |journal=Brain Res. Dev. Brain Res. |volume=130 |issue= 2 |pages= 217–30 |year= 2002 |pmid= 11675124 |doi= }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=Espinoza HM, Ganga M, Vadlamudi U, ''et al.'' |title=Protein kinase C phosphorylation modulates N- and C-terminal regulatory activities of the PITX2 homeodomain protein. |journal=Biochemistry |volume=44 |issue= 10 |pages= 3942–54 |year= 2005 |pmid= 15751970 |doi= 10.1021/bi048362x }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-2-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Enamelin&diff=52170403 Enamelin 2008-07-10T07:49:00Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=10117}}<br /> '''Enamelin''', also known as '''ENAM''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: ENAM enamelin| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=10117| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Dental enamel is a highly mineralized tissue with 85% of its volume occupied by unusually large, highly organized, hydroxyapatite crystals. This highly organized and unusual structure is thought to be rigorously controlled in ameloblasts through the interaction of a number of organic matrix molecules that include enamelin, amelogenin (AMELX; MIM 300391), ameloblastin (AMBN; MIM 601259), tuftelin (TUFT1; MIM 600087), dentine sialophosphoprotein (DSPP; MIM 125485), and a variety of enzymes. Enamelin is the largest protein in the enamel matrix of developing teeth and comprises approximately 5% of total enamel matrix protein.[supplied by OMIM]&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: ENAM enamelin| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=10117| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Hu JC, Yamakoshi Y |title=Enamelin and autosomal-dominant amelogenesis imperfecta. |journal=Crit. Rev. Oral Biol. Med. |volume=14 |issue= 6 |pages= 387–98 |year= 2003 |pmid= 14656895 |doi= }}<br /> *{{cite journal | author=Gutierrez SJ, Chaves M, Torres DM, Briceño I |title=Identification of a novel mutation in the enamalin gene in a family with autosomal-dominant amelogenesis imperfecta. |journal=Arch. Oral Biol. |volume=52 |issue= 5 |pages= 503–6 |year= 2007 |pmid= 17316551 |doi= 10.1016/j.archoralbio.2006.09.014 }}<br /> *{{cite journal | author=Pavlic A, Petelin M, Battelino T |title=Phenotype and enamel ultrastructure characteristics in patients with ENAM gene mutations g.13185-13186insAG and 8344delG. |journal=Arch. Oral Biol. |volume=52 |issue= 3 |pages= 209–17 |year= 2007 |pmid= 17125728 |doi= 10.1016/j.archoralbio.2006.10.010 }}<br /> *{{cite journal | author=Ballif BA, Villén J, Beausoleil SA, ''et al.'' |title=Phosphoproteomic analysis of the developing mouse brain. |journal=Mol. Cell Proteomics |volume=3 |issue= 11 |pages= 1093–101 |year= 2005 |pmid= 15345747 |doi= 10.1074/mcp.M400085-MCP200 }}<br /> *{{cite journal | author=Hart TC, Hart PS, Gorry MC, ''et al.'' |title=Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects. |journal=J. Med. Genet. |volume=40 |issue= 12 |pages= 900–6 |year= 2004 |pmid= 14684688 |doi= }}<br /> *{{cite journal | author=Hart PS, Michalec MD, Seow WK, ''et al.'' |title=Identification of the enamelin (g.8344delG) mutation in a new kindred and presentation of a standardized ENAM nomenclature. |journal=Arch. Oral Biol. |volume=48 |issue= 8 |pages= 589–96 |year= 2003 |pmid= 12828988 |doi= }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Kida M, Ariga T, Shirakawa T, ''et al.'' |title=Autosomal-dominant hypoplastic form of amelogenesis imperfecta caused by an enamelin gene mutation at the exon-intron boundary. |journal=J. Dent. Res. |volume=81 |issue= 11 |pages= 738–42 |year= 2002 |pmid= 12407086 |doi= }}<br /> *{{cite journal | author=Mårdh CK, Bäckman B, Holmgren G, ''et al.'' |title=A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2). |journal=Hum. Mol. Genet. |volume=11 |issue= 9 |pages= 1069–74 |year= 2002 |pmid= 11978766 |doi= }}<br /> *{{cite journal | author=Rajpar MH, Harley K, Laing C, ''et al.'' |title=Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta. |journal=Hum. Mol. Genet. |volume=10 |issue= 16 |pages= 1673–7 |year= 2001 |pmid= 11487571 |doi= }}<br /> *{{cite journal | author=Hartley JL, Temple GF, Brasch MA |title=DNA cloning using in vitro site-specific recombination. |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788–95 |year= 2001 |pmid= 11076863 |doi= }}<br /> *{{cite journal | author=Dong J, Gu TT, Simmons D, MacDougall M |title=Enamelin maps to human chromosome 4q21 within the autosomal dominant amelogenesis imperfecta locus. |journal=Eur. J. Oral Sci. |volume=108 |issue= 5 |pages= 353–8 |year= 2001 |pmid= 11037750 |doi= }}<br /> *{{cite journal | author=Hu CC, Hart TC, Dupont BR, ''et al.'' |title=Cloning human enamelin cDNA, chromosomal localization, and analysis of expression during tooth development. |journal=J. Dent. Res. |volume=79 |issue= 4 |pages= 912–9 |year= 2000 |pmid= 10831092 |doi= }}<br /> *{{cite journal | author=Forsman K, Lind L, Bäckman B, ''et al.'' |title=Localization of a gene for autosomal dominant amelogenesis imperfecta (ADAI) to chromosome 4q. |journal=Hum. Mol. Genet. |volume=3 |issue= 9 |pages= 1621–5 |year= 1995 |pmid= 7833920 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-4-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=N-Acylglucosamin-2-Epimerase&diff=134185148 N-Acylglucosamin-2-Epimerase 2008-07-09T17:56:02Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=5973}}<br /> '''Renin binding protein''', also known as '''RENBP''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: RENBP renin binding protein| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=5973| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The gene product inhibits renin activity by forming a dimer with renin, a complex known as high molecular weight renin. The encoded protein contains a leucine zipper domain, which is essential for its dimerization with renin. The gene product can catalyze the interconversion of N-acetylglucosamine to N-acetylmannosamine, indicating that it is a GlcNAc 2-epimerase. Transcript variants utilizing alternative promoters have been described in the literature.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: RENBP renin binding protein| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=5973| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Takahashi S, Inoue H, Miyake Y |title=The human gene for renin-binding protein. |journal=J. Biol. Chem. |volume=267 |issue= 18 |pages= 13007–13 |year= 1992 |pmid= 1618798 |doi= }}<br /> *{{cite journal | author=Inoue H, Takahashi S, Fukui K, Miyake Y |title=Genetic and molecular properties of human and rat renin-binding proteins with reference to the function of the leucine zipper motif. |journal=J. Biochem. |volume=110 |issue= 4 |pages= 493–500 |year= 1992 |pmid= 1723410 |doi= }}<br /> *{{cite journal | author=Takahashi S, Miura R, Miyake Y |title=A study on renin binding protein (RnBP) in the human kidney. |journal=J. Biochem. |volume=97 |issue= 2 |pages= 671–7 |year= 1985 |pmid= 3924907 |doi= }}<br /> *{{cite journal | author=Murakami K, Hirose S, Chino S, ''et al.'' |title=Properties of renin-binding protein. |journal=Clinical and experimental hypertension. Part A, Theory and practice |volume=4 |issue= 11-12 |pages= 2073–81 |year= 1983 |pmid= 6756682 |doi= }}<br /> *{{cite journal | author=Faranda S, Frattini A, Vezzoni P |title=The human genes encoding renin-binding protein and host cell factor are closely linked in Xq28 and transcribed in the same direction. |journal=Gene |volume=155 |issue= 2 |pages= 237–9 |year= 1995 |pmid= 7721097 |doi= }}<br /> *{{cite journal | author=van den Ouweland AM, Verdijk M, Kiochis P, ''et al.'' |title=The human renin-binding protein gene (RENBP) maps in Xq28. |journal=Genomics |volume=21 |issue= 1 |pages= 279–81 |year= 1994 |pmid= 8088804 |doi= 10.1006/geno.1994.1259 }}<br /> *{{cite journal | author=Knöll A, Schunkert H, Reichwald K, ''et al.'' |title=Human renin binding protein: complete genomic sequence and association of an intronic T/C polymorphism with the prorenin level in males. |journal=Hum. Mol. Genet. |volume=6 |issue= 9 |pages= 1527–34 |year= 1998 |pmid= 9285790 |doi= }}<br /> *{{cite journal | author=Brenner V, Nyakatura G, Rosenthal A, Platzer M |title=Genomic organization of two novel genes on human Xq28: compact head to head arrangement of IDH gamma and TRAP delta is conserved in rat and mouse. |journal=Genomics |volume=44 |issue= 1 |pages= 8–14 |year= 1997 |pmid= 9286695 |doi= 10.1006/geno.1997.4822 }}<br /> *{{cite journal | author=Stäsche R, Hinderlich S, Weise C, ''et al.'' |title=A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. |journal=J. Biol. Chem. |volume=272 |issue= 39 |pages= 24319–24 |year= 1997 |pmid= 9305888 |doi= }}<br /> *{{cite journal | author=Takahashi S, Takahashi K, Kaneko T, ''et al.'' |title=Human renin-binding protein is the enzyme N-acetyl-D-glucosamine 2-epimerase. |journal=J. Biochem. |volume=125 |issue= 2 |pages= 348–53 |year= 1999 |pmid= 9990133 |doi= }}<br /> *{{cite journal | author=Takahashi S, Kumagai M, Shindo S, ''et al.'' |title=Renin inhibits N-acetyl-D-glucosamine 2-epimerase (renin-binding protein). |journal=J. Biochem. |volume=128 |issue= 6 |pages= 951–6 |year= 2001 |pmid= 11098137 |doi= }}<br /> *{{cite journal | author=Simpson JC, Wellenreuther R, Poustka A, ''et al.'' |title=Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. |journal=EMBO Rep. |volume=1 |issue= 3 |pages= 287–92 |year= 2001 |pmid= 11256614 |doi= 10.1093/embo-reports/kvd058 }}<br /> *{{cite journal | author=Lapteva N, Nieda M, Ando Y, ''et al.'' |title=Expression of renin-angiotensin system genes in immature and mature dendritic cells identified using human cDNA microarray. |journal=Biochem. Biophys. Res. Commun. |volume=285 |issue= 4 |pages= 1059–65 |year= 2001 |pmid= 11467860 |doi= 10.1006/bbrc.2001.5215 }}<br /> *{{cite journal | author=Takahashi S, Ogasawara H, Takahashi K, ''et al.'' |title=Identification of a domain conferring nucleotide binding to the N-acetyl-d-glucosamine 2-epimerase (Renin binding protein). |journal=J. Biochem. |volume=131 |issue= 4 |pages= 605–10 |year= 2002 |pmid= 11926999 |doi= }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Luchansky SJ, Yarema KJ, Takahashi S, Bertozzi CR |title=GlcNAc 2-epimerase can serve a catabolic role in sialic acid metabolism. |journal=J. Biol. Chem. |volume=278 |issue= 10 |pages= 8035–42 |year= 2003 |pmid= 12499362 |doi= 10.1074/jbc.M212127200 }}<br /> *{{cite journal | author=Bohlmeyer T, Ferdensi A, Bristow MR, ''et al.'' |title=Selective activation of N-acyl-D-glucosamine 2-epimerase expression in failing human heart ventricular myocytes. |journal=J. Card. Fail. |volume=9 |issue= 1 |pages= 59–68 |year= 2003 |pmid= 12612874 |doi= 10.1054/jcaf.2003.6 }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=Rual JF, Venkatesan K, Hao T, ''et al.'' |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-X-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hom%C3%B6oboxprotein_DLX-4&diff=99285923 Homöoboxprotein DLX-4 2008-07-09T17:15:10Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=1748}}<br /> '''Distal-less homeobox 4''', also known as '''DLX4''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX4 distal-less homeobox 4| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1748| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Many vertebrate homeo box-containing genes have been identified on the basis of their sequence similarity with Drosophila developmental genes. Members of the Dlx gene family contain a homeobox that is related to that of Distal-less (Dll), a gene expressed in the head and limbs of the developing fruit fly. The Distal-less (Dlx) family of genes comprises at least 6 different members, DLX1-DLX6. The DLX proteins are postulated to play a role in forebrain and craniofacial development. Three transcript variants have been described for this gene, however, the full length nature of one variant has not been described. Studies of the two splice variants revealed that one encoded isoform functions as a repressor of the beta-globin gene while the other isoform lacks that function.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX4 distal-less homeobox 4| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1748| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Nakamura S, Stock DW, Wydner KL, ''et al.'' |title=Genomic analysis of a new mammalian distal-less gene: Dlx7. |journal=Genomics |volume=38 |issue= 3 |pages= 314–24 |year= 1997 |pmid= 8975708 |doi= 10.1006/geno.1996.0634 }}<br /> *{{cite journal | author=Quinn LM, Johnson BV, Nicholl J, ''et al.'' |title=Isolation and identification of homeobox genes from the human placenta including a novel member of the Distal-less family, DLX4. |journal=Gene |volume=187 |issue= 1 |pages= 55–61 |year= 1997 |pmid= 9073066 |doi= }}<br /> *{{cite journal | author=Morasso MI, Yonescu R, Griffin CA, Sargent TD |title=Localization of human DLX8 to chromosome 17q21.3-q22 by fluorescence in situ hybridization. |journal=Mamm. Genome |volume=8 |issue= 4 |pages= 302–3 |year= 1997 |pmid= 9096128 |doi= }}<br /> *{{cite journal | author=Price JA, Bowden DW, Wright JT, ''et al.'' |title=Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. |journal=Hum. Mol. Genet. |volume=7 |issue= 3 |pages= 563–9 |year= 1998 |pmid= 9467018 |doi= }}<br /> *{{cite journal | author=Quinn LM, Latham SE, Kalionis B |title=A distal-less class homeobox gene, DLX4, is a candidate for regulating epithelial-mesenchymal cell interactions in the human placenta. |journal=Placenta |volume=19 |issue= 1 |pages= 87–93 |year= 1998 |pmid= 9481790 |doi= }}<br /> *{{cite journal | author=Quinn LM, Kilpatrick LM, Latham SE, Kalionis B |title=Homeobox genes DLX4 and HB24 are expressed in regions of epithelial-mesenchymal cell interaction in the adult human endometrium. |journal=Mol. Hum. Reprod. |volume=4 |issue= 5 |pages= 497–501 |year= 1998 |pmid= 9665637 |doi= }}<br /> *{{cite journal | author=Quinn LM, Latham SE, Kalionis B |title=The homeobox genes MSX2 and MOX2 are candidates for regulating epithelial-mesenchymal cell interactions in the human placenta. |journal=Placenta |volume=21 Suppl A |issue= |pages= S50–4 |year= 2000 |pmid= 10831122 |doi= }}<br /> *{{cite journal | author=Haga SB, Fu S, Karp JE, ''et al.'' |title=BP1, a new homeobox gene, is frequently expressed in acute leukemias. |journal=Leukemia |volume=14 |issue= 11 |pages= 1867–75 |year= 2000 |pmid= 11069021 |doi= }}<br /> *{{cite journal | author=Masuda Y, Sasaki A, Shibuya H, ''et al.'' |title=Dlxin-1, a novel protein that binds Dlx5 and regulates its transcriptional function. |journal=J. Biol. Chem. |volume=276 |issue= 7 |pages= 5331–8 |year= 2001 |pmid= 11084035 |doi= 10.1074/jbc.M008590200 }}<br /> *{{cite journal | author=Fu S, Stevenson H, Strovel JW, ''et al.'' |title=Distinct functions of two isoforms of a homeobox gene, BP1 and DLX7, in the regulation of the beta-globin gene. |journal=Gene |volume=278 |issue= 1-2 |pages= 131–9 |year= 2002 |pmid= 11707330 |doi= }}<br /> *{{cite journal | author=Sumiyama K, Irvine SQ, Stock DW, ''et al.'' |title=Genomic structure and functional control of the Dlx3-7 bigene cluster. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 2 |pages= 780–5 |year= 2002 |pmid= 11792834 |doi= 10.1073/pnas.012584999 }}<br /> *{{cite journal | author=Chase MB, Fu S, Haga SB, ''et al.'' |title=BP1, a homeodomain-containing isoform of DLX4, represses the beta-globin gene. |journal=Mol. Cell. Biol. |volume=22 |issue= 8 |pages= 2505–14 |year= 2002 |pmid= 11909945 |doi= }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Neufing PJ, Kalionis B, Horsfall DJ, ''et al.'' |title=Expression and localization of homeodomain proteins DLX4/HB9 in normal and malignant human breast tissues. |journal=Anticancer Res. |volume=23 |issue= 2B |pages= 1479–88 |year= 2003 |pmid= 12820413 |doi= }}<br /> *{{cite journal | author=Zoueva OP, Rodgers GP |title=Inhibition of beta protein 1 expression enhances beta-globin promoter activity and beta-globin mRNA levels in the human erythroleukemia (K562) cell line. |journal=Exp. Hematol. |volume=32 |issue= 8 |pages= 700–8 |year= 2004 |pmid= 15308321 |doi= 10.1016/j.exphem.2004.05.024 }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=Mpollo MS, Beaudoin M, Berg PE, ''et al.'' |title=BP1 is a negative modulator of definitive erythropoiesis. |journal=Nucleic Acids Res. |volume=34 |issue= 18 |pages= 5232–7 |year= 2006 |pmid= 17003054 |doi= 10.1093/nar/gkl680 }}<br /> *{{cite journal | author=Murthi P, Said JM, Doherty VL, ''et al.'' |title=Homeobox gene DLX4 expression is increased in idiopathic human fetal growth restriction. |journal=Mol. Hum. Reprod. |volume=12 |issue= 12 |pages= 763–9 |year= 2007 |pmid= 17062780 |doi= 10.1093/molehr/gal087 }}<br /> *{{cite journal | author=Tomida S, Yanagisawa K, Koshikawa K, ''et al.'' |title=Identification of a metastasis signature and the DLX4 homeobox protein as a regulator of metastasis by combined transcriptome approach. |journal=Oncogene |volume=26 |issue= 31 |pages= 4600–8 |year= 2007 |pmid= 17260014 |doi= 10.1038/sj.onc.1210242 }}<br /> }}<br /> {{refend}}<br /> <br /> == External links ==<br /> * {{MeshName|DLX4+protein,+human}}<br /> <br /> <br /> {{gene-17-stub}}<br /> {{NLM content}}<br /> {{Transcription factors}}<br /> [[Category:Transcription factors]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hom%C3%B6oboxprotein_DLX-3&diff=99213194 Homöoboxprotein DLX-3 2008-07-09T16:20:01Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=1747}}<br /> '''Distal-less homeobox 3''', also known as '''DLX3''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX3 distal-less homeobox 3| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1747| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Many vertebrate homeo box-containing genes have been identified on the basis of their sequence similarity with Drosophila developmental genes. Members of the Dlx gene family contain a homeobox that is related to that of Distal-less (Dll), a gene expressed in the head and limbs of the developing fruit fly. The Distal-less (Dlx) family of genes comprises at least 6 different members, DLX1-DLX6. Trichodentoosseous syndrome (TDO), an autosomal dominant condition, has been correlated with DLX3 gene mutation. This gene is located in a tail-to-tail configuration with another member of the gene family on the long arm of chromosome 17. Mutations in this gene have been associated with the autosomal dominant conditions trichodentoosseous syndrome and amelogenesis imperfecta with taurodontism.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX3 distal-less homeobox 3| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1747| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Morasso MI, Radoja N |title=Dlx genes, p63, and ectodermal dysplasias. |journal=Birth Defects Res. C Embryo Today |volume=75 |issue= 3 |pages= 163–71 |year= 2005 |pmid= 16187309 |doi= 10.1002/bdrc.20047 }}<br /> *{{cite journal | author=Scherer SW, Heng HH, Robinson GW, ''et al.'' |title=Assignment of the human homolog of mouse Dlx3 to chromosome 17q21.3-q22 by analysis of somatic cell hybrids and fluorescence in situ hybridization. |journal=Mamm. Genome |volume=6 |issue= 4 |pages= 310–1 |year= 1995 |pmid= 7613049 |doi= }}<br /> *{{cite journal | author=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery. |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi= }}<br /> *{{cite journal | author=Nakamura S, Stock DW, Wydner KL, ''et al.'' |title=Genomic analysis of a new mammalian distal-less gene: Dlx7. |journal=Genomics |volume=38 |issue= 3 |pages= 314–24 |year= 1997 |pmid= 8975708 |doi= 10.1006/geno.1996.0634 }}<br /> *{{cite journal | author=Price JA, Bowden DW, Wright JT, ''et al.'' |title=Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. |journal=Hum. Mol. Genet. |volume=7 |issue= 3 |pages= 563–9 |year= 1998 |pmid= 9467018 |doi= }}<br /> *{{cite journal | author=Roberson MS, Meermann S, Morasso MI, ''et al.'' |title=A role for the homeobox protein Distal-less 3 in the activation of the glycoprotein hormone alpha subunit gene in choriocarcinoma cells. |journal=J. Biol. Chem. |volume=276 |issue= 13 |pages= 10016–24 |year= 2001 |pmid= 11113121 |doi= 10.1074/jbc.M007481200 }}<br /> *{{cite journal | author=Park GT, Denning MF, Morasso MI |title=Phosphorylation of murine homeodomain protein Dlx3 by protein kinase C. |journal=FEBS Lett. |volume=496 |issue= 1 |pages= 60–5 |year= 2001 |pmid= 11343707 |doi= }}<br /> *{{cite journal | author=Peng L, Payne AH |title=AP-2 gamma and the homeodomain protein distal-less 3 are required for placental-specific expression of the murine 3 beta-hydroxysteroid dehydrogenase VI gene, Hsd3b6. |journal=J. Biol. Chem. |volume=277 |issue= 10 |pages= 7945–54 |year= 2002 |pmid= 11773066 |doi= 10.1074/jbc.M106765200 }}<br /> *{{cite journal | author=Sumiyama K, Irvine SQ, Stock DW, ''et al.'' |title=Genomic structure and functional control of the Dlx3-7 bigene cluster. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 2 |pages= 780–5 |year= 2002 |pmid= 11792834 |doi= 10.1073/pnas.012584999 }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Imabayashi H, Mori T, Gojo S, ''et al.'' |title=Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis. |journal=Exp. Cell Res. |volume=288 |issue= 1 |pages= 35–50 |year= 2003 |pmid= 12878157 |doi= }}<br /> *{{cite journal | author=Holland MP, Bliss SP, Berghorn KA, Roberson MS |title=A role for CCAAT/enhancer-binding protein beta in the basal regulation of the distal-less 3 gene promoter in placental cells. |journal=Endocrinology |volume=145 |issue= 3 |pages= 1096–105 |year= 2004 |pmid= 14670999 |doi= 10.1210/en.2003-0777 }}<br /> *{{cite journal | author=Haldeman RJ, Cooper LF, Hart TC, ''et al.'' |title=Increased bone density associated with DLX3 mutation in the tricho-dento-osseous syndrome. |journal=Bone |volume=35 |issue= 4 |pages= 988–97 |year= 2005 |pmid= 15454107 |doi= 10.1016/j.bone.2004.06.003 }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=Dong J, Amor D, Aldred MJ, ''et al.'' |title=DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. |journal=Am. J. Med. Genet. A |volume=133 |issue= 2 |pages= 138–41 |year= 2005 |pmid= 15666299 |doi= 10.1002/ajmg.a.30521 }}<br /> *{{cite journal | author=Islam M, Lurie AG, Reichenberger E |title=Clinical features of tricho-dento-osseous syndrome and presentation of three new cases: an addition to clinical heterogeneity. |journal=Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics |volume=100 |issue= 6 |pages= 736–42 |year= 2006 |pmid= 16301156 |doi= 10.1016/j.tripleo.2005.04.017 }}<br /> *{{cite journal | author=Otsuki T, Ota T, Nishikawa T, ''et al.'' |title=Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. |journal=DNA Res. |volume=12 |issue= 2 |pages= 117–26 |year= 2007 |pmid= 16303743 |doi= 10.1093/dnares/12.2.117 }}<br /> *{{cite journal | author=Morsczeck C |title=Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. |journal=Calcif. Tissue Int. |volume=78 |issue= 2 |pages= 98–102 |year= 2006 |pmid= 16467978 |doi= 10.1007/s00223-005-0146-0 }}<br /> *{{cite journal | author=Berghorn KA, Clark-Campbell PA, Han L, ''et al.'' |title=Smad6 represses Dlx3 transcriptional activity through inhibition of DNA binding. |journal=J. Biol. Chem. |volume=281 |issue= 29 |pages= 20357–67 |year= 2006 |pmid= 16687405 |doi= 10.1074/jbc.M603049200 }}<br /> }}<br /> {{refend}}<br /> <br /> == External links ==<br /> * {{MeshName|DLX3+protein,+human}}<br /> <br /> <br /> {{gene-17-stub}}<br /> {{NLM content}}<br /> {{Transcription factors}}<br /> [[Category:Transcription factors]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=GRIA_4&diff=52203280 GRIA 4 2008-07-09T15:34:14Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=2893}}<br /> '''Glutamate receptor, ionotrophic, AMPA 4''', also known as '''GRIA4''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: GRIA4 glutamate receptor, ionotrophic, AMPA 4| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=2893| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = This gene is a member of a family of L-glutamate-gated ion channels that mediate fast synaptic excitatory neurotransmission. These channels are also responsive to the glutamate agonist, alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionate (AMPA). Some haplotypes of this gene show a positive association with schizophrenia. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: GRIA4 glutamate receptor, ionotrophic, AMPA 4| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=2893| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==See also==<br /> * [[AMPA receptor]]<br /> <br /> ==References==<br /> {{reflist}}<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=McNamara JO, Eubanks JH, McPherson JD, ''et al.'' |title=Chromosomal localization of human glutamate receptor genes. |journal=J. Neurosci. |volume=12 |issue= 7 |pages= 2555–62 |year= 1992 |pmid= 1319477 |doi= }}<br /> *{{cite journal | author=Hardy M, Younkin D, Tang CM, ''et al.'' |title=Expression of non-NMDA glutamate receptor channel genes by clonal human neurons. |journal=J. Neurochem. |volume=63 |issue= 2 |pages= 482–9 |year= 1994 |pmid= 7518497 |doi= }}<br /> *{{cite journal | author=Roche KW, Raymond LA, Blackstone C, Huganir RL |title=Transmembrane topology of the glutamate receptor subunit GluR6. |journal=J. Biol. Chem. |volume=269 |issue= 16 |pages= 11679–82 |year= 1994 |pmid= 8163463 |doi= }}<br /> *{{cite journal | author=Fletcher EJ, Nutt SL, Hoo KH, ''et al.'' |title=Cloning, expression and pharmacological characterization of a human glutamate receptor: hGluR4. |journal=Recept. Channels |volume=3 |issue= 1 |pages= 21–31 |year= 1996 |pmid= 8589990 |doi= }}<br /> *{{cite journal | author=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery. |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi= }}<br /> *{{cite journal | author=Ripellino JA, Neve RL, Howe JR |title=Expression and heteromeric interactions of non-N-methyl-D-aspartate glutamate receptor subunits in the developing and adult cerebellum. |journal=Neuroscience |volume=82 |issue= 2 |pages= 485–97 |year= 1998 |pmid= 9466455 |doi= }}<br /> *{{cite journal | author=Carvalho AL, Kameyama K, Huganir RL |title=Characterization of phosphorylation sites on the glutamate receptor 4 subunit of the AMPA receptors. |journal=J. Neurosci. |volume=19 |issue= 12 |pages= 4748–54 |year= 1999 |pmid= 10366608 |doi= }}<br /> *{{cite journal | author=Chen L, Chetkovich DM, Petralia RS, ''et al.'' |title=Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. |journal=Nature |volume=408 |issue= 6815 |pages= 936–43 |year= 2001 |pmid= 11140673 |doi= 10.1038/35050030 }}<br /> *{{cite journal | author=Hirbec H, Perestenko O, Nishimune A, ''et al.'' |title=The PDZ proteins PICK1, GRIP, and syntenin bind multiple glutamate receptor subtypes. Analysis of PDZ binding motifs. |journal=J. Biol. Chem. |volume=277 |issue= 18 |pages= 15221–4 |year= 2002 |pmid= 11891216 |doi= 10.1074/jbc.C200112200 }}<br /> *{{cite journal | author=Tomiyama M, Rodríguez-Puertas R, Cortés R, ''et al.'' |title=Flip and flop splice variants of AMPA receptor subunits in the spinal cord of amyotrophic lateral sclerosis. |journal=Synapse |volume=45 |issue= 4 |pages= 245–9 |year= 2002 |pmid= 12125045 |doi= 10.1002/syn.10098 }}<br /> *{{cite journal | author=Pasternack A, Coleman SK, Jouppila A, ''et al.'' |title=Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain. |journal=J. Biol. Chem. |volume=277 |issue= 51 |pages= 49662–7 |year= 2003 |pmid= 12393905 |doi= 10.1074/jbc.M208349200 }}<br /> *{{cite journal | author=Correia SS, Duarte CB, Faro CJ, ''et al.'' |title=Protein kinase C gamma associates directly with the GluR4 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit. Effect on receptor phosphorylation. |journal=J. Biol. Chem. |volume=278 |issue= 8 |pages= 6307–13 |year= 2003 |pmid= 12471040 |doi= 10.1074/jbc.M205587200 }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Makino C, Fujii Y, Kikuta R, ''et al.'' |title=Positive association of the AMPA receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia: linkage disequilibrium mapping using SNPs evenly distributed across the gene region. |journal=Am. J. Med. Genet. B Neuropsychiatr. Genet. |volume=116 |issue= 1 |pages= 17–22 |year= 2003 |pmid= 12497607 |doi= 10.1002/ajmg.b.10041 }}<br /> *{{cite journal | author=Coleman SK, Cai C, Mottershead DG, ''et al.'' |title=Surface expression of GluR-D AMPA receptor is dependent on an interaction between its C-terminal domain and a 4.1 protein. |journal=J. Neurosci. |volume=23 |issue= 3 |pages= 798–806 |year= 2003 |pmid= 12574408 |doi= }}<br /> *{{cite journal | author=Pasternack A, Coleman SK, Féthière J, ''et al.'' |title=Characterization of the functional role of the N-glycans in the AMPA receptor ligand-binding domain. |journal=J. Neurochem. |volume=84 |issue= 5 |pages= 1184–92 |year= 2003 |pmid= 12603841 |doi= }}<br /> *{{cite journal | author=Kawahara Y, Ito K, Sun H, ''et al.'' |title=GluR4c, an alternative splicing isoform of GluR4, is abundantly expressed in the adult human brain. |journal=Brain Res. Mol. Brain Res. |volume=127 |issue= 1-2 |pages= 150–5 |year= 2004 |pmid= 15306133 |doi= 10.1016/j.molbrainres.2004.05.020 }}<br /> *{{cite journal | author=Li G, Sheng Z, Huang Z, Niu L |title=Kinetic mechanism of channel opening of the GluRDflip AMPA receptor. |journal=Biochemistry |volume=44 |issue= 15 |pages= 5835–41 |year= 2005 |pmid= 15823042 |doi= 10.1021/bi047413n }}<br /> *{{cite journal | author=Nuriya M, Oh S, Huganir RL |title=Phosphorylation-dependent interactions of alpha-Actinin-1/IQGAP1 with the AMPA receptor subunit GluR4. |journal=J. Neurochem. |volume=95 |issue= 2 |pages= 544–52 |year= 2005 |pmid= 16190873 |doi= 10.1111/j.1471-4159.2005.03410.x }}<br /> *{{cite journal | author=Kimura K, Wakamatsu A, Suzuki Y, ''et al.'' |title=Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. |journal=Genome Res. |volume=16 |issue= 1 |pages= 55–65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 }}<br /> }}<br /> {{refend}}<br /> <br /> == External links ==<br /> * {{MeshName|GRIA4+protein,+human}}<br /> <br /> {{membrane-protein-stub}}<br /> {{NLM content}}<br /> {{Ligand-gated ion channels}}<br /> [[Category:Ion channels]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hom%C3%B6oboxprotein_DLX-5&diff=95284526 Homöoboxprotein DLX-5 2008-07-09T15:26:52Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=1749}}<br /> '''Distal-less homeobox 5''', also known as '''DLX5''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX5 distal-less homeobox 5| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1749| accessdate = }}&lt;/ref&gt;<br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = This gene encodes a member of a homeobox transcription factor gene family similar to the Drosophila distal-less gene. The encoded protein may play a role in bone development and fracture healing. Mutation in this gene, which is located in a tail-to-tail configuration with another member of the family on the long arm of chromosome 7, may be associated with split-hand/split-foot malformation.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX5 distal-less homeobox 5| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1749| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Bapat S, Galande S |title=Association by guilt: identification of DLX5 as a target for MeCP2 provides a molecular link between genomic imprinting and Rett syndrome. |journal=Bioessays |volume=27 |issue= 7 |pages= 676–80 |year= 2005 |pmid= 15954098 |doi= 10.1002/bies.20266 }}<br /> *{{cite journal | author=Simeone A, Acampora D, Pannese M, ''et al.'' |title=Cloning and characterization of two members of the vertebrate Dlx gene family. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 6 |pages= 2250–4 |year= 1994 |pmid= 7907794 |doi= }}<br /> *{{cite journal | author=Scherer SW, Poorkaj P, Massa H, ''et al.'' |title=Physical mapping of the split hand/split foot locus on chromosome 7 and implication in syndromic ectrodactyly. |journal=Hum. Mol. Genet. |volume=3 |issue= 8 |pages= 1345–54 |year= 1995 |pmid= 7987313 |doi= }}<br /> *{{cite journal | author=Hillier LD, Lennon G, Becker M, ''et al.'' |title=Generation and analysis of 280,000 human expressed sequence tags. |journal=Genome Res. |volume=6 |issue= 9 |pages= 807–28 |year= 1997 |pmid= 8889549 |doi= }}<br /> *{{cite journal | author=Zhang H, Hu G, Wang H, ''et al.'' |title=Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. |journal=Mol. Cell. Biol. |volume=17 |issue= 5 |pages= 2920–32 |year= 1997 |pmid= 9111364 |doi= }}<br /> *{{cite journal | author=Newberry EP, Latifi T, Towler DA |title=The RRM domain of MINT, a novel Msx2 binding protein, recognizes and regulates the rat osteocalcin promoter. |journal=Biochemistry |volume=38 |issue= 33 |pages= 10678–90 |year= 1999 |pmid= 10451362 |doi= 10.1021/bi990967j }}<br /> *{{cite journal | author=Eisenstat DD, Liu JK, Mione M, ''et al.'' |title=DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. |journal=J. Comp. Neurol. |volume=414 |issue= 2 |pages= 217–37 |year= 1999 |pmid= 10516593 |doi= }}<br /> *{{cite journal | author=Masuda Y, Sasaki A, Shibuya H, ''et al.'' |title=Dlxin-1, a novel protein that binds Dlx5 and regulates its transcriptional function. |journal=J. Biol. Chem. |volume=276 |issue= 7 |pages= 5331–8 |year= 2001 |pmid= 11084035 |doi= 10.1074/jbc.M008590200 }}<br /> *{{cite journal | author=Yu G, Zerucha T, Ekker M, Rubenstein JL |title=Evidence that GRIP, a PDZ-domain protein which is expressed in the embryonic forebrain, co-activates transcription with DLX homeodomain proteins. |journal=Brain Res. Dev. Brain Res. |volume=130 |issue= 2 |pages= 217–30 |year= 2002 |pmid= 11675124 |doi= }}<br /> *{{cite journal | author=Sasaki A, Masuda Y, Iwai K, ''et al.'' |title=A RING finger protein Praja1 regulates Dlx5-dependent transcription through its ubiquitin ligase activity for the Dlx/Msx-interacting MAGE/Necdin family protein, Dlxin-1. |journal=J. Biol. Chem. |volume=277 |issue= 25 |pages= 22541–6 |year= 2002 |pmid= 11959851 |doi= 10.1074/jbc.M109728200 }}<br /> *{{cite journal | author=Willis DM, Loewy AP, Charlton-Kachigian N, ''et al.'' |title=Regulation of osteocalcin gene expression by a novel Ku antigen transcription factor complex. |journal=J. Biol. Chem. |volume=277 |issue= 40 |pages= 37280–91 |year= 2002 |pmid= 12145306 |doi= 10.1074/jbc.M206482200 }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Scherer SW, Cheung J, MacDonald JR, ''et al.'' |title=Human chromosome 7: DNA sequence and biology. |journal=Science |volume=300 |issue= 5620 |pages= 767–72 |year= 2003 |pmid= 12690205 |doi= 10.1126/science.1083423 }}<br /> *{{cite journal | author=Okita C, Meguro M, Hoshiya H, ''et al.'' |title=A new imprinted cluster on the human chromosome 7q21-q31, identified by human-mouse monochromosomal hybrids. |journal=Genomics |volume=81 |issue= 6 |pages= 556–9 |year= 2004 |pmid= 12782124 |doi= }}<br /> *{{cite journal | author=Hillier LW, Fulton RS, Fulton LA, ''et al.'' |title=The DNA sequence of human chromosome 7. |journal=Nature |volume=424 |issue= 6945 |pages= 157–64 |year= 2003 |pmid= 12853948 |doi= 10.1038/nature01782 }}<br /> *{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=Rual JF, Venkatesan K, Hao T, ''et al.'' |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}<br /> *{{cite journal | author=Kimura K, Wakamatsu A, Suzuki Y, ''et al.'' |title=Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. |journal=Genome Res. |volume=16 |issue= 1 |pages= 55–65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 }}<br /> }}<br /> {{refend}}<br /> <br /> == External links ==<br /> * {{MeshName|DLX5+protein,+human}}<br /> <br /> <br /> {{gene-7-stub}}<br /> {{NLM content}}<br /> {{Transcription factors}}<br /> [[Category:Transcription factors]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = no<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Leber-Phosphofructokinase&diff=193709656 Leber-Phosphofructokinase 2008-07-09T14:03:12Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=5211}}<br /> '''Phosphofructokinase, liver''', also known as '''PFKL''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: PFKL phosphofructokinase, liver| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=5211| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Phosphofructokinase (PFK) is a tetrameric enzyme that catalyzes a key step in glycolysis, namely the conversion of D-fructose 6-phosphate to D-fructose 1,6-bisphosphate. Separate genes encode a muscle subunit (M) and a liver subunit (L). PFK from muscle is a homotetramer of M subunits, PFK from liver is a homotetramer of L-subunits, while PFK from platelets can be composed of any tetrameric combination of M and L subunits. The protein encoded by this gene represents the L subunit. Two transcript variants encoding different isoforms have been found for this gene.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: PFKL phosphofructokinase, liver| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=5211| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Kahn A, Meienhofer MC, Cottreau D, ''et al.'' |title=Phosphofructokinase (PFK) isozymes in man. I. Studies of adult human tissues. |journal=Hum. Genet. |volume=48 |issue= 1 |pages= 93–108 |year= 1979 |pmid= 156693 |doi= }}<br /> *{{cite journal | author=Kristensen T, Lopez R, Prydz H |title=An estimate of the sequencing error frequency in the DNA sequence databases. |journal=DNA Seq. |volume=2 |issue= 6 |pages= 343–6 |year= 1992 |pmid= 1446073 |doi= }}<br /> *{{cite journal | author=Wang D, Fang H, Cantor CR, Smith CL |title=A contiguous Not I restriction map of band q22.3 of human chromosome 21. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=89 |issue= 8 |pages= 3222–6 |year= 1992 |pmid= 1565613 |doi= }}<br /> *{{cite journal | author=Elson A, Levanon D, Brandeis M, ''et al.'' |title=The structure of the human liver-type phosphofructokinase gene. |journal=Genomics |volume=7 |issue= 1 |pages= 47–56 |year= 1990 |pmid= 2139864 |doi= }}<br /> *{{cite journal | author=Levanon D, Danciger E, Dafni N, ''et al.'' |title=The primary structure of human liver type phosphofructokinase and its comparison with other types of PFK. |journal=DNA |volume=8 |issue= 10 |pages= 733–43 |year= 1990 |pmid= 2533063 |doi= }}<br /> *{{cite journal | author=Van Keuren M, Drabkin H, Hart I, ''et al.'' |title=Regional assignment of human liver-type 6-phosphofructokinase to chromosome 21q22.3 by using somatic cell hybrids and a monoclonal anti-L antibody. |journal=Hum. Genet. |volume=74 |issue= 1 |pages= 34–40 |year= 1986 |pmid= 2944814 |doi= }}<br /> *{{cite journal | author=Levanon D, Danciger E, Dafni N, Groner Y |title=Genomic clones of the human liver-type phosphofructokinase. |journal=Biochem. Biophys. Res. Commun. |volume=141 |issue= 1 |pages= 374–80 |year= 1987 |pmid= 2948503 |doi= }}<br /> *{{cite journal | author=Vora S, Davidson M, Seaman C, ''et al.'' |title=Heterogeneity of the molecular lesions in inherited phosphofructokinase deficiency. |journal=J. Clin. Invest. |volume=72 |issue= 6 |pages= 1995–2006 |year= 1984 |pmid= 6227635 |doi= }}<br /> *{{cite journal | author=Vora S, Seaman C, Durham S, Piomelli S |title=Isozymes of human phosphofructokinase: identification and subunit structural characterization of a new system. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=77 |issue= 1 |pages= 62–6 |year= 1980 |pmid= 6444721 |doi= }}<br /> *{{cite journal | author=Koster JF, Slee RG, Van Berkel TJ |title=Isoenzymes of human phosphofructokinase. |journal=Clin. Chim. Acta |volume=103 |issue= 2 |pages= 169–73 |year= 1980 |pmid= 6445244 |doi= }}<br /> *{{cite journal | author=Vora S, Francke U |title=Assignment of the human gene for liver-type 6-phosphofructokinase isozyme (PFKL) to chromosome 21 by using somatic cell hybrids and monoclonal anti-L antibody. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=78 |issue= 6 |pages= 3738–42 |year= 1981 |pmid= 6455664 |doi= }}<br /> *{{cite journal | author=Zeitschel U, Bigl M, Eschrich K, Bigl V |title=Cellular distribution of 6-phosphofructo-1-kinase isoenzymes in rat brain. |journal=J. Neurochem. |volume=67 |issue= 6 |pages= 2573–80 |year= 1996 |pmid= 8931492 |doi= }}<br /> *{{cite journal | author=Hattori M, Fujiyama A, Taylor TD, ''et al.'' |title=The DNA sequence of human chromosome 21. |journal=Nature |volume=405 |issue= 6784 |pages= 311–9 |year= 2000 |pmid= 10830953 |doi= 10.1038/35012518 }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Gevaert K, Goethals M, Martens L, ''et al.'' |title=Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. |journal=Nat. Biotechnol. |volume=21 |issue= 5 |pages= 566–9 |year= 2004 |pmid= 12665801 |doi= 10.1038/nbt810 }}<br /> *{{cite journal | author=Zhang C, Dowd DR, Staal A, ''et al.'' |title=Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. |journal=J. Biol. Chem. |volume=278 |issue= 37 |pages= 35325–36 |year= 2003 |pmid= 12840015 |doi= 10.1074/jbc.M305191200 }}<br /> *{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}<br /> *{{cite journal | author=Colland F, Jacq X, Trouplin V, ''et al.'' |title=Functional proteomics mapping of a human signaling pathway. |journal=Genome Res. |volume=14 |issue= 7 |pages= 1324–32 |year= 2004 |pmid= 15231748 |doi= 10.1101/gr.2334104 }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=Rush J, Moritz A, Lee KA, ''et al.'' |title=Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. |journal=Nat. Biotechnol. |volume=23 |issue= 1 |pages= 94–101 |year= 2005 |pmid= 15592455 |doi= 10.1038/nbt1046 }}<br /> }}<br /> {{refend}}<br /> <br /> <br /> {{gene-21-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=HBZ_(Protein)&diff=100866293 HBZ (Protein) 2008-07-09T13:04:36Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=3050}}<br /> '''Hemoglobin, zeta''', also known as '''HBZ''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HBZ hemoglobin, zeta| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3050| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Zeta-globin is an alpha-like hemoglobin. The zeta-globin polypeptide is synthesized in the yolk sac of the early embryo, while alpha-globin is produced throughout fetal and adult like. The zeta-globin gene is a member of the human alpha-globin gene cluster that includes five functional genes and two pseudogenes. The order of genes is: 5' - zeta - pseudozeta - mu - pseudoalpha-1 - alpha-2 -alpha-1 - theta1 - 3'.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HBZ hemoglobin, zeta| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3050| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi= }}<br /> *{{cite journal | author=Proudfoot NJ, Brownlee GG |title=3' non-coding region sequences in eukaryotic messenger RNA. |journal=Nature |volume=263 |issue= 5574 |pages= 211–4 |year= 1976 |pmid= 822353 |doi= }}<br /> *{{cite journal | author=Fougerousse F, Meloni R, Roudaut C, Beckmann JS |title=Dinucleotide repeat polymorphism at the human hemoglobin alpha-1 pseudo-gene (HBAP1). |journal=Nucleic Acids Res. |volume=20 |issue= 5 |pages= 1165 |year= 1992 |pmid= 1549498 |doi= }}<br /> *{{cite journal | author=Hess J, Perez-Stable C, Wu GJ, ''et al.'' |title=End-to-end transcription of an Alu family repeat. A new type of polymerase-III-dependent terminator and its evolutionary implication. |journal=J. Mol. Biol. |volume=184 |issue= 1 |pages= 7–21 |year= 1985 |pmid= 2411938 |doi= }}<br /> *{{cite journal | author=Marotta CA, Forget BG, Weissman SM, ''et al.'' |title=Nucleotide sequences of human globin messenger RNA. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=71 |issue= 6 |pages= 2300–4 |year= 1974 |pmid= 4135409 |doi= }}<br /> *{{cite journal | author=Perez-Stable C, Ayres TM, Shen CK |title=Distinctive sequence organization and functional programming of an Alu repeat promoter. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=81 |issue= 17 |pages= 5291–5 |year= 1984 |pmid= 6089189 |doi= }}<br /> *{{cite journal | author=Clegg JB, Gagnon J |title=Structure of the zeta chain of human embryonic hemoglobin. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=78 |issue= 10 |pages= 6076–80 |year= 1982 |pmid= 6171809 |doi= }}<br /> *{{cite journal | author=Aschauer H, Schäfer W, Sanguansermsri T, Braunitzer G |title=[Human embryonic haemoglobins. Ac-Ser-Leu-Thr-is the N-terminal sequence of the zeta-chains (author's transl)] |journal=Hoppe-Seyler's Z. Physiol. Chem. |volume=362 |issue= 12 |pages= 1657–9 |year= 1982 |pmid= 6172357 |doi= }}<br /> *{{cite journal | author=Aschauer H, Sanguansermsri T, Braunitzer G |title=[Human embryonic haemoglobins. The primary structure of the zeta chains (author's transl)] |journal=Hoppe-Seyler's Z. Physiol. Chem. |volume=362 |issue= 8 |pages= 1159–62 |year= 1982 |pmid= 6179844 |doi= }}<br /> *{{cite journal | author=Proudfoot NJ, Gil A, Maniatis T |title=The structure of the human zeta-globin gene and a closely linked, nearly identical pseudogene. |journal=Cell |volume=31 |issue= 3 Pt 2 |pages= 553–63 |year= 1983 |pmid= 6297773 |doi= }}<br /> *{{cite journal | author=Goodbourn SE, Higgs DR, Clegg JB, Weatherall DJ |title=Molecular basis of length polymorphism in the human zeta-globin gene complex. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=80 |issue= 16 |pages= 5022–6 |year= 1983 |pmid= 6308667 |doi= }}<br /> *{{cite journal | author=Cohen-Solal MM, Authier B, deRiel JK, ''et al.'' |title=Cloning and nucleotide sequence analysis of human embryonic zeta-globin cDNA. |journal=DNA |volume=1 |issue= 4 |pages= 355–63 |year= 1983 |pmid= 6963223 |doi= }}<br /> *{{cite journal | author=Orkin SH, Michelson A |title=Partial deletion of the alpha-globin structural gene in human alpha-thalassaemia. |journal=Nature |volume=286 |issue= 5772 |pages= 538–40 |year= 1980 |pmid= 7402334 |doi= }}<br /> *{{cite journal | author=Flint J, Thomas K, Micklem G, ''et al.'' |title=The relationship between chromosome structure and function at a human telomeric region. |journal=Nat. Genet. |volume=15 |issue= 3 |pages= 252–7 |year= 1997 |pmid= 9054936 |doi= 10.1038/ng0397-252 }}<br /> *{{cite journal | author=Luo HY, Liang XL, Frye C, ''et al.'' |title=Embryonic hemoglobins are expressed in definitive cells. |journal=Blood |volume=94 |issue= 1 |pages= 359–61 |year= 1999 |pmid= 10381533 |doi= }}<br /> *{{cite journal | author=Daniels RJ, Peden JF, Lloyd C, ''et al.'' |title=Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16. |journal=Hum. Mol. Genet. |volume=10 |issue= 4 |pages= 339–52 |year= 2001 |pmid= 11157797 |doi= }}<br /> *{{cite journal | author=Lau ET, Kwok YK, Chui DH, ''et al.'' |title=Embryonic and fetal globins are expressed in adult erythroid progenitor cells and in erythroid cell cultures. |journal=Prenat. Diagn. |volume=21 |issue= 7 |pages= 529–39 |year= 2001 |pmid= 11494285 |doi= 10.1002/pd.81 }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-16-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Kallikrein-4&diff=52170475 Kallikrein-4 2008-07-09T12:16:43Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=9622}}<br /> '''Kallikrein-related peptidase 4''', also known as '''KLK4''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: KLK4 kallikrein-related peptidase 4| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=9622| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Kallikreins are a subgroup of serine proteases having diverse physiological functions. Growing evidence suggests that many kallikreins are implicated in carcinogenesis and some have potential as novel cancer and other disease biomarkers. This gene is one of the fifteen kallikrein subfamily members located in a cluster on chromosome 19. In some tissues its expression is hormonally regulated. The expression pattern of a similar mouse protein in murine developing teeth supports a role for the protein in the degradation of enamel proteins. Alternate splice variants for this gene have been described, but their biological validity has not been determined.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: KLK4 kallikrein-related peptidase 4| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=9622| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Clements J, Hooper J, Dong Y, Harvey T |title=The expanded human kallikrein (KLK) gene family: genomic organisation, tissue-specific expression and potential functions. |journal=Biol. Chem. |volume=382 |issue= 1 |pages= 5–14 |year= 2001 |pmid= 11258672 |doi= }}<br /> *{{cite journal | author=Simmer JP, Fukae M, Tanabe T, ''et al.'' |title=Purification, characterization, and cloning of enamel matrix serine proteinase 1. |journal=J. Dent. Res. |volume=77 |issue= 2 |pages= 377–86 |year= 1998 |pmid= 9465170 |doi= }}<br /> *{{cite journal | author=Nelson PS, Gan L, Ferguson C, ''et al.'' |title=Molecular cloning and characterization of prostase, an androgen-regulated serine protease with prostate-restricted expression. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=96 |issue= 6 |pages= 3114–9 |year= 1999 |pmid= 10077646 |doi= }}<br /> *{{cite journal | author=Stephenson SA, Verity K, Ashworth LK, Clements JA |title=Localization of a new prostate-specific antigen-related serine protease gene, KLK4, is evidence for an expanded human kallikrein gene family cluster on chromosome 19q13.3-13.4. |journal=J. Biol. Chem. |volume=274 |issue= 33 |pages= 23210–4 |year= 1999 |pmid= 10438493 |doi= }}<br /> *{{cite journal | author=Yousef GM, Obiezu CV, Luo LY, ''et al.'' |title=Prostase/KLK-L1 is a new member of the human kallikrein gene family, is expressed in prostate and breast tissues, and is hormonally regulated. |journal=Cancer Res. |volume=59 |issue= 17 |pages= 4252–6 |year= 1999 |pmid= 10485467 |doi= }}<br /> *{{cite journal | author=DuPont BR, Hu CC, Reveles X, Simmer JP |title=Assignment of serine protease 17 (PRSS17) to human chromosome bands 19q13.3--&gt;q13.4 by in situ hybridization. |journal=Cytogenet. Cell Genet. |volume=86 |issue= 3-4 |pages= 212–3 |year= 2000 |pmid= 10575207 |doi= }}<br /> *{{cite journal | author=Hu JC, Zhang C, Sun X, ''et al.'' |title=Characterization of the mouse and human PRSS17 genes, their relationship to other serine proteases, and the expression of PRSS17 in developing mouse incisors. |journal=Gene |volume=251 |issue= 1 |pages= 1–8 |year= 2000 |pmid= 10863090 |doi= }}<br /> *{{cite journal | author=Gan L, Lee I, Smith R, ''et al.'' |title=Sequencing and expression analysis of the serine protease gene cluster located in chromosome 19q13 region. |journal=Gene |volume=257 |issue= 1 |pages= 119–30 |year= 2001 |pmid= 11054574 |doi= }}<br /> *{{cite journal | author=Obiezu CV, Diamandis EP |title=An alternatively spliced variant of KLK4 expressed in prostatic tissue. |journal=Clin. Biochem. |volume=33 |issue= 7 |pages= 599–600 |year= 2001 |pmid= 11124349 |doi= }}<br /> *{{cite journal | author=Takayama TK, Carter CA, Deng T |title=Activation of prostate-specific antigen precursor (pro-PSA) by prostin, a novel human prostatic serine protease identified by degenerate PCR. |journal=Biochemistry |volume=40 |issue= 6 |pages= 1679–87 |year= 2001 |pmid= 11327827 |doi= }}<br /> *{{cite journal | author=Korkmaz KS, Korkmaz CG, Pretlow TG, Saatcioglu F |title=Distinctly different gene structure of KLK4/KLK-L1/prostase/ARM1 compared with other members of the kallikrein family: intracellular localization, alternative cDNA forms, and Regulation by multiple hormones. |journal=DNA Cell Biol. |volume=20 |issue= 7 |pages= 435–45 |year= 2001 |pmid= 11506707 |doi= 10.1089/104454901750361497 }}<br /> *{{cite journal | author=Takayama TK, McMullen BA, Nelson PS, ''et al.'' |title=Characterization of hK4 (prostase), a prostate-specific serine protease: activation of the precursor of prostate specific antigen (pro-PSA) and single-chain urokinase-type plasminogen activator and degradation of prostatic acid phosphatase. |journal=Biochemistry |volume=40 |issue= 50 |pages= 15341–8 |year= 2002 |pmid= 11735417 |doi= }}<br /> *{{cite journal | author=Hural JA, Friedman RS, McNabb A, ''et al.'' |title=Identification of naturally processed CD4 T cell epitopes from the prostate-specific antigen kallikrein 4 using peptide-based in vitro stimulation. |journal=J. Immunol. |volume=169 |issue= 1 |pages= 557–65 |year= 2002 |pmid= 12077288 |doi= }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Grimwood J, Gordon LA, Olsen A, ''et al.'' |title=The DNA sequence and biology of human chromosome 19. |journal=Nature |volume=428 |issue= 6982 |pages= 529–35 |year= 2004 |pmid= 15057824 |doi= 10.1038/nature02399 }}<br /> *{{cite journal | author=Xi Z, Klokk TI, Korkmaz K, ''et al.'' |title=Kallikrein 4 is a predominantly nuclear protein and is overexpressed in prostate cancer. |journal=Cancer Res. |volume=64 |issue= 7 |pages= 2365–70 |year= 2004 |pmid= 15059887 |doi= }}<br /> *{{cite journal | author=Hart PS, Hart TC, Michalec MD, ''et al.'' |title=Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. |journal=J. Med. Genet. |volume=41 |issue= 7 |pages= 545–9 |year= 2004 |pmid= 15235027 |doi= }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=Veveris-Lowe TL, Lawrence MG, Collard RL, ''et al.'' |title=Kallikrein 4 (hK4) and prostate-specific antigen (PSA) are associated with the loss of E-cadherin and an epithelial-mesenchymal transition (EMT)-like effect in prostate cancer cells. |journal=Endocr. Relat. Cancer |volume=12 |issue= 3 |pages= 631–43 |year= 2005 |pmid= 16172196 |doi= 10.1677/erc.1.00958 }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-19-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Muskel-Phosphofructokinase&diff=193712971 Muskel-Phosphofructokinase 2008-07-09T10:46:08Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=5213}}<br /> '''Phosphofructokinase, muscle''', also known as '''PFKM''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: PFKM phosphofructokinase, muscle| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=5213| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = <br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Raben N, Sherman JB |title=Mutations in muscle phosphofructokinase gene. |journal=Hum. Mutat. |volume=6 |issue= 1 |pages= 1–6 |year= 1995 |pmid= 7550225 |doi= 10.1002/humu.1380060102 }}<br /> *{{cite journal | author=Kahn A, Etiemble J, Meienhofer MC, Bovin P |title=Erythrocyte phosphofructokinase deficiency associated with an unstable variant of muscle phosphofructokinase. |journal=Clin. Chim. Acta |volume=61 |issue= 3 |pages= 415–9 |year= 1975 |pmid= 125160 |doi= }}<br /> *{{cite journal | author=Zhao ZZ, Malencik DA, Anderson SR |title=Protein-induced inactivation and phosphorylation of rabbit muscle phosphofructokinase. |journal=Biochemistry |volume=30 |issue= 8 |pages= 2204–16 |year= 1991 |pmid= 1825608 |doi= }}<br /> *{{cite journal | author=Yamasaki T, Nakajima H, Kono N, ''et al.'' |title=Structure of the entire human muscle phosphofructokinase-encoding gene: a two-promoter system. |journal=Gene |volume=104 |issue= 2 |pages= 277–82 |year= 1991 |pmid= 1833270 |doi= }}<br /> *{{cite journal | author=Sharma PM, Reddy GR, [[Bernard Babior|Babior BM]], McLachlan A |title=Alternative splicing of the transcript encoding the human muscle isoenzyme of phosphofructokinase. |journal=J. Biol. Chem. |volume=265 |issue= 16 |pages= 9006–10 |year= 1990 |pmid= 2140567 |doi= }}<br /> *{{cite journal | author=Nakajima H, Kono N, Yamasaki T, ''et al.'' |title=Genetic defect in muscle phosphofructokinase deficiency. Abnormal splicing of the muscle phosphofructokinase gene due to a point mutation at the 5'-splice site. |journal=J. Biol. Chem. |volume=265 |issue= 16 |pages= 9392–5 |year= 1990 |pmid= 2140573 |doi= }}<br /> *{{cite journal | author=Valdez BC, Chen Z, Sosa MG, ''et al.'' |title=Human 6-phosphofructo-1-kinase gene has an additional intron upstream of start codon. |journal=Gene |volume=76 |issue= 1 |pages= 167–9 |year= 1989 |pmid= 2526044 |doi= }}<br /> *{{cite journal | author=Sharma PM, Reddy GR, Vora S, ''et al.'' |title=Cloning and expression of a human muscle phosphofructokinase cDNA. |journal=Gene |volume=77 |issue= 1 |pages= 177–83 |year= 1989 |pmid= 2526045 |doi= }}<br /> *{{cite journal | author=Nakajima H, Noguchi T, Yamasaki T, ''et al.'' |title=Cloning of human muscle phosphofructokinase cDNA. |journal=FEBS Lett. |volume=223 |issue= 1 |pages= 113–6 |year= 1987 |pmid= 2822475 |doi= }}<br /> *{{cite journal | author=Vora S, Seaman C, Durham S, Piomelli S |title=Isozymes of human phosphofructokinase: identification and subunit structural characterization of a new system. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=77 |issue= 1 |pages= 62–6 |year= 1980 |pmid= 6444721 |doi= }}<br /> *{{cite journal | author=Kahn A, Weil D, Cottreau D, Dreyfus JC |title=Muscle phosphofructokinase deficiency in man: expression of the defect in blood cells and cultured fibroblasts. |journal=Ann. Hum. Genet. |volume=45 |issue= Pt 1 |pages= 5–14 |year= 1982 |pmid= 6459054 |doi= }}<br /> *{{cite journal | author=Vasconcelos O, Sivakumar K, Dalakas MC, ''et al.'' |title=Nonsense mutation in the phosphofructokinase muscle subunit gene associated with retention of intron 10 in one of the isolated transcripts in Ashkenazi Jewish patients with Tarui disease. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=92 |issue= 22 |pages= 10322–6 |year= 1995 |pmid= 7479776 |doi= }}<br /> *{{cite journal | author=Tsujino S, Servidei S, Tonin P, ''et al.'' |title=Identification of three novel mutations in non-Ashkenazi Italian patients with muscle phosphofructokinase deficiency. |journal=Am. J. Hum. Genet. |volume=54 |issue= 5 |pages= 812–9 |year= 1994 |pmid= 7513946 |doi= }}<br /> *{{cite journal | author=Raben N, Exelbert R, Spiegel R, ''et al.'' |title=Functional expression of human mutant phosphofructokinase in yeast: genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency. |journal=Am. J. Hum. Genet. |volume=56 |issue= 1 |pages= 131–41 |year= 1995 |pmid= 7825568 |doi= }}<br /> *{{cite journal | author=Raben N, Sherman J, Miller F, ''et al.'' |title=A 5' splice junction mutation leading to exon deletion in an Ashkenazic Jewish family with phosphofructokinase deficiency (Tarui disease). |journal=J. Biol. Chem. |volume=268 |issue= 7 |pages= 4963–7 |year= 1993 |pmid= 8444874 |doi= }}<br /> *{{cite journal | author=Howard TD, Akots G, Bowden DW |title=Physical and genetic mapping of the muscle phosphofructokinase gene (PFKM): reassignment to human chromosome 12q. |journal=Genomics |volume=34 |issue= 1 |pages= 122–7 |year= 1996 |pmid= 8661033 |doi= 10.1006/geno.1996.0250 }}<br /> *{{cite journal | author=Hamaguchi T, Nakajima H, Noguchi T, ''et al.'' |title=Novel missense mutation (W686C) of the phosphofructokinase-M gene in a Japanese patient with a mild form of glycogenosis VII. |journal=Hum. Mutat. |volume=8 |issue= 3 |pages= 273–5 |year= 1997 |pmid= 8889589 |doi= 10.1002/(SICI)1098-1004(1996)8:3&amp;lt;273::AID-HUMU13&amp;gt;3.0.CO;2-# }}<br /> *{{cite journal | author=Scherer PE, Lisanti MP |title=Association of phosphofructokinase-M with caveolin-3 in differentiated skeletal myotubes. Dynamic regulation by extracellular glucose and intracellular metabolites. |journal=J. Biol. Chem. |volume=272 |issue= 33 |pages= 20698–705 |year= 1997 |pmid= 9252390 |doi= }}<br /> *{{cite journal | author=Ristow M, Vorgerd M, Möhlig M, ''et al.'' |title=Deficiency of phosphofructo-1-kinase/muscle subtype in humans impairs insulin secretion and causes insulin resistance. |journal=J. Clin. Invest. |volume=100 |issue= 11 |pages= 2833–41 |year= 1998 |pmid= 9389749 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-12-stub}}<br /> <br /> [[pt:PFKM]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=GRIA_2&diff=52169748 GRIA 2 2008-07-09T08:15:44Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=2891}}<br /> '''Glutamate receptor, ionotropic, AMPA 2''', also known as '''GRIA2''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: GRIA2 glutamate receptor, ionotropic, AMPA 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=2891| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. This gene product belongs to a family of glutamate receptors that are sensitive to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and function as ligand-activated cation channels. These channels are assembled from 4 related subunits, GRIA1-4. The subunit encoded by this gene (GRIA2) is subject to RNA editing (CAG-&amp;gt;CGG; Q-&amp;gt;R) within the second transmembrane domain, which is thought to render the channel impermeable to Ca(2+). Human and animal studies suggest that pre-mRNA editing is essential for brain function, and defective GRIA2 RNA editing at the Q/R site may be relevant to amyotrophic lateral sclerosis (ALS) etiology. Alternative splicing, resulting in transcript variants encoding different isoforms, has been noted for this gene, which includes the generation of flip and flop isoforms that vary in their signal transduction properties.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: GRIA2 glutamate receptor, ionotropic, AMPA 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=2891| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==See also==<br /> * [[AMPA receptor]]<br /> <br /> ==References==<br /> {{reflist}}<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Soundarapandian MM, Tu WH, Peng PL, ''et al.'' |title=AMPA receptor subunit GluR2 gates injurious signals in ischemic stroke. |journal=Mol. Neurobiol. |volume=32 |issue= 2 |pages= 145–55 |year= 2007 |pmid= 16215279 |doi= }}<br /> *{{cite journal | author=Sun W, Ferrer-Montiel AV, Schinder AF, ''et al.'' |title=Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=89 |issue= 4 |pages= 1443–7 |year= 1992 |pmid= 1311100 |doi= }}<br /> *{{cite journal | author=McNamara JO, Eubanks JH, McPherson JD, ''et al.'' |title=Chromosomal localization of human glutamate receptor genes. |journal=J. Neurosci. |volume=12 |issue= 7 |pages= 2555–62 |year= 1992 |pmid= 1319477 |doi= }}<br /> *{{cite journal | author=Sommer B, Keinänen K, Verdoorn TA, ''et al.'' |title=Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. |journal=Science |volume=249 |issue= 4976 |pages= 1580–5 |year= 1990 |pmid= 1699275 |doi= }}<br /> *{{cite journal | author=Sommer B, Köhler M, Sprengel R, Seeburg PH |title=RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. |journal=Cell |volume=67 |issue= 1 |pages= 11–9 |year= 1991 |pmid= 1717158 |doi= }}<br /> *{{cite journal | author=Paschen W, Hedreen JC, Ross CA |title=RNA editing of the glutamate receptor subunits GluR2 and GluR6 in human brain tissue. |journal=J. Neurochem. |volume=63 |issue= 5 |pages= 1596–602 |year= 1994 |pmid= 7523595 |doi= }}<br /> *{{cite journal | author=Köhler M, Kornau HC, Seeburg PH |title=The organization of the gene for the functionally dominant alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. |journal=J. Biol. Chem. |volume=269 |issue= 26 |pages= 17367–70 |year= 1994 |pmid= 7545935 |doi= }}<br /> *{{cite journal | author=Eastwood SL, Burnet PW, Beckwith J, ''et al.'' |title=AMPA glutamate receptors and their flip and flop mRNAs in human hippocampus. |journal=Neuroreport |volume=5 |issue= 11 |pages= 1325–8 |year= 1994 |pmid= 7919190 |doi= }}<br /> *{{cite journal | author=Sun W, Ferrer-Montiel AV, Montal M |title=Primary structure and functional expression of the AMPA/kainate receptor subunit 2 from human brain. |journal=Neuroreport |volume=5 |issue= 4 |pages= 441–4 |year= 1994 |pmid= 8003671 |doi= }}<br /> *{{cite journal | author=Higuchi M, Single FN, Köhler M, ''et al.'' |title=RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. |journal=Cell |volume=75 |issue= 7 |pages= 1361–70 |year= 1994 |pmid= 8269514 |doi= }}<br /> *{{cite journal | author=McLaughlin DP, Cheetham ME, Kerwin RW |title=Expression of alternatively-spliced glutamate receptors in human hippocampus. |journal=Eur. J. Pharmacol. |volume=244 |issue= 1 |pages= 89–92 |year= 1993 |pmid= 8420792 |doi= }}<br /> *{{cite journal | author=Srivastava S, Osten P, Vilim FS, ''et al.'' |title=Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP. |journal=Neuron |volume=21 |issue= 3 |pages= 581–91 |year= 1998 |pmid= 9768844 |doi= }}<br /> *{{cite journal | author=Matsuda S, Mikawa S, Hirai H |title=Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. |journal=J. Neurochem. |volume=73 |issue= 4 |pages= 1765–8 |year= 1999 |pmid= 10501226 |doi= }}<br /> *{{cite journal | author=Hirai H, Matsuda S |title=Interaction of the C-terminal domain of delta glutamate receptor with spectrin in the dendritic spines of cultured Purkinje cells. |journal=Neurosci. Res. |volume=34 |issue= 4 |pages= 281–7 |year= 2000 |pmid= 10576550 |doi= }}<br /> *{{cite journal | author=Aruscavage PJ, Bass BL |title=A phylogenetic analysis reveals an unusual sequence conservation within introns involved in RNA editing. |journal=RNA |volume=6 |issue= 2 |pages= 257–69 |year= 2000 |pmid= 10688364 |doi= }}<br /> *{{cite journal | author=Osten P, Khatri L, Perez JL, ''et al.'' |title=Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. |journal=Neuron |volume=27 |issue= 2 |pages= 313–25 |year= 2000 |pmid= 10985351 |doi= }}<br /> *{{cite journal | author=Chung HJ, Xia J, Scannevin RH, ''et al.'' |title=Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. |journal=J. Neurosci. |volume=20 |issue= 19 |pages= 7258–67 |year= 2001 |pmid= 11007883 |doi= }}<br /> *{{cite journal | author=Armstrong N, Gouaux E |title=Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. |journal=Neuron |volume=28 |issue= 1 |pages= 165–81 |year= 2000 |pmid= 11086992 |doi= }}<br /> *{{cite journal | author=Krampfl K, Schlesinger F, Zörner A, ''et al.'' |title=Control of kinetic properties of GluR2 flop AMPA-type channels: impact of R/G nuclear editing. |journal=Eur. J. Neurosci. |volume=15 |issue= 1 |pages= 51–62 |year= 2002 |pmid= 11860506 |doi= }}<br /> *{{cite journal | author=Hirbec H, Perestenko O, Nishimune A, ''et al.'' |title=The PDZ proteins PICK1, GRIP, and syntenin bind multiple glutamate receptor subtypes. Analysis of PDZ binding motifs. |journal=J. Biol. Chem. |volume=277 |issue= 18 |pages= 15221–4 |year= 2002 |pmid= 11891216 |doi= 10.1074/jbc.C200112200 }}<br /> }}<br /> {{refend}}<br /> <br /> == External links ==<br /> * {{MeshName|GRIA2+protein,+human}}<br /> <br /> {{membrane-protein-stub}}<br /> {{NLM content}}<br /> {{Ligand-gated ion channels}}<br /> [[Category:Ion channels]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=GRIA_1&diff=52169389 GRIA 1 2008-07-09T07:37:39Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=2890}}<br /> '''Glutamate receptor, ionotropic, AMPA 1''', also known as '''GRIA1''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: GRIA1 glutamate receptor, ionotropic, AMPA 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=2890| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. These receptors are heteromeric protein complexes with multiple subunits, each possessing transmembrane regions, and all arranged to form a ligand-gated ion channel. The classification of glutamate receptors is based on their activation by different pharmacologic agonists. The GRIA1 belongs to a family of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. Each of the members (GRIA1-4) include flip and flop isoforms generated by alternative RNA splicing. The receptor subunits encoded by each isoform vary in their signal transduction properties. The isoform presented here is the flop isoform. In situ hybridization experiments showed that human GRIA1 mRNA is present in granule and pyramidal cells in the hippocampal formation.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: GRIA1 glutamate receptor, ionotropic, AMPA 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=2890| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==See also==<br /> * [[AMPA receptor]]<br /> <br /> ==References==<br /> {{reflist}}<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Sun W, Ferrer-Montiel AV, Schinder AF, ''et al.'' |title=Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=89 |issue= 4 |pages= 1443–7 |year= 1992 |pmid= 1311100 |doi= }}<br /> *{{cite journal | author=McNamara JO, Eubanks JH, McPherson JD, ''et al.'' |title=Chromosomal localization of human glutamate receptor genes. |journal=J. Neurosci. |volume=12 |issue= 7 |pages= 2555–62 |year= 1992 |pmid= 1319477 |doi= }}<br /> *{{cite journal | author=Potier MC, Spillantini MG, Carter NP |title=The human glutamate receptor cDNA GluR1: cloning, sequencing, expression and localization to chromosome 5. |journal=DNA Seq. |volume=2 |issue= 4 |pages= 211–8 |year= 1992 |pmid= 1320959 |doi= }}<br /> *{{cite journal | author=Puckett C, Gomez CM, Korenberg JR, ''et al.'' |title=Molecular cloning and chromosomal localization of one of the human glutamate receptor genes. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=88 |issue= 17 |pages= 7557–61 |year= 1991 |pmid= 1652753 |doi= }}<br /> *{{cite journal | author=Yakel JL, Vissavajjhala P, Derkach VA, ''et al.'' |title=Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=92 |issue= 5 |pages= 1376–80 |year= 1995 |pmid= 7877986 |doi= }}<br /> *{{cite journal | author=Eastwood SL, Burnet PW, Beckwith J, ''et al.'' |title=AMPA glutamate receptors and their flip and flop mRNAs in human hippocampus. |journal=Neuroreport |volume=5 |issue= 11 |pages= 1325–8 |year= 1994 |pmid= 7919190 |doi= }}<br /> *{{cite journal | author=Roche KW, Raymond LA, Blackstone C, Huganir RL |title=Transmembrane topology of the glutamate receptor subunit GluR6. |journal=J. Biol. Chem. |volume=269 |issue= 16 |pages= 11679–82 |year= 1994 |pmid= 8163463 |doi= }}<br /> *{{cite journal | author=McLaughlin DP, Cheetham ME, Kerwin RW |title=Expression of alternatively-spliced glutamate receptors in human hippocampus. |journal=Eur. J. Pharmacol. |volume=244 |issue= 1 |pages= 89–92 |year= 1993 |pmid= 8420792 |doi= }}<br /> *{{cite journal | author=Roche KW, O'Brien RJ, Mammen AL, ''et al.'' |title=Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. |journal=Neuron |volume=16 |issue= 6 |pages= 1179–88 |year= 1996 |pmid= 8663994 |doi= }}<br /> *{{cite journal | author=Brakeman PR, Lanahan AA, O'Brien R, ''et al.'' |title=Homer: a protein that selectively binds metabotropic glutamate receptors. |journal=Nature |volume=386 |issue= 6622 |pages= 284–8 |year= 1997 |pmid= 9069287 |doi= 10.1038/386284a0 }}<br /> *{{cite journal | author=Barria A, Derkach V, Soderling T |title=Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. |journal=J. Biol. Chem. |volume=272 |issue= 52 |pages= 32727–30 |year= 1998 |pmid= 9407043 |doi= }}<br /> *{{cite journal | author=Ripellino JA, Neve RL, Howe JR |title=Expression and heteromeric interactions of non-N-methyl-D-aspartate glutamate receptor subunits in the developing and adult cerebellum. |journal=Neuroscience |volume=82 |issue= 2 |pages= 485–97 |year= 1998 |pmid= 9466455 |doi= }}<br /> *{{cite journal | author=Leonard AS, Davare MA, Horne MC, ''et al.'' |title=SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. |journal=J. Biol. Chem. |volume=273 |issue= 31 |pages= 19518–24 |year= 1998 |pmid= 9677374 |doi= }}<br /> *{{cite journal | author=Xiao B, Tu JC, Petralia RS, ''et al.'' |title=Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. |journal=Neuron |volume=21 |issue= 4 |pages= 707–16 |year= 1998 |pmid= 9808458 |doi= }}<br /> *{{cite journal | author=Montague AA, Greer CA |title=Differential distribution of ionotropic glutamate receptor subunits in the rat olfactory bulb. |journal=J. Comp. Neurol. |volume=405 |issue= 2 |pages= 233–46 |year= 1999 |pmid= 10023812 |doi= }}<br /> *{{cite journal | author=Leuschner WD, Hoch W |title=Subtype-specific assembly of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is mediated by their n-terminal domains. |journal=J. Biol. Chem. |volume=274 |issue= 24 |pages= 16907–16 |year= 1999 |pmid= 10358037 |doi= }}<br /> *{{cite journal | author=Shi SH, Hayashi Y, Petralia RS, ''et al.'' |title=Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. |journal=Science |volume=284 |issue= 5421 |pages= 1811–6 |year= 1999 |pmid= 10364548 |doi= }}<br /> *{{cite journal | author=Rubio ME, Wenthold RJ |title=Calnexin and the immunoglobulin binding protein (BiP) coimmunoprecipitate with AMPA receptors. |journal=J. Neurochem. |volume=73 |issue= 3 |pages= 942–8 |year= 1999 |pmid= 10461883 |doi= }}<br /> *{{cite journal | author=Mahlknecht U, Bucala R, Hoelzer D, Verdin E |title=High resolution physical mapping of human HDAC3, a potential tumor suppressor gene in the 5q31 region. |journal=Cytogenet. Cell Genet. |volume=86 |issue= 3-4 |pages= 237–9 |year= 2000 |pmid= 10575214 |doi= }}<br /> *{{cite journal | author=Stinehelfer S, Vruwink M, Burette A |title=Immunolocalization of mGluR1alpha in specific populations of local circuit neurons in the cerebral cortex. |journal=Brain Res. |volume=861 |issue= 1 |pages= 37–44 |year= 2000 |pmid= 10751563 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> == External links ==<br /> * {{MeshName|GRIA1+protein,+human}}<br /> <br /> {{membrane-protein-stub}}<br /> {{NLM content}}<br /> {{Ligand-gated ion channels}}<br /> [[Category:Ion channels]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Prohibitin&diff=52172278 Prohibitin 2008-07-09T07:22:08Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=5245}}<br /> '''Prohibitin''', also known as '''PHB''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: PHB prohibitin| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=5245| accessdate = }}&lt;/ref&gt;<br /> Prohibitin genes have been described in animals, fungi, plants and unicellular eukaryotes. Prohibitins are divided in two classes, termed Type-I and Type-II prohibitins, based on their similarity to yeast PHB1 or PHB2, respectively. Each organism has at least one copy of each type of prohibitin gene.<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Prohibitins are evolutionarily conserved genes that are ubiquitously expressed. The human prohibitin gene, located on the BRCA1 chromosome region 17q21, was originally thought to be a negative regulator of cell proliferation and a tumor suppressor. This anti-proliferative activity was later attributed to the 3' UTR of the PHB gene, and not to the actual protein. Mutations in human PHB have been linked to sporadic breast cancer. Prohibitin is expressed as two transcripts with varying lengths of 3' untranslated region. The longer transcript is present at higher levels in proliferating tissues and cells, suggesting that this longer 3' untranslated region may function as a trans-acting regulatory RNA.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: PHB prohibitin| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=5245| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> Currently, it is thought that prohibitins form large ring-shaped protein complexes in the inner mitochondrial membrane that are essential for viability of multicellular organisms. The precise molecular function of the PHB complex is not clear, but a role as chaperone for respiration chain proteins or a as a general structuring scaffold required for optimal mitochondrial morphology and function are suspected. Recently, prohibitins have been demonstrated to be positive, rather than negative, regulators of cell proliferation in both plants and mice. In contrast, a large number of publications suggest that human PHB1 is a nuclear-localised repressor of the cell cycle, acting by direct binding and inhibition of the proliferation-stimulating transcription factor E2F. However, these experiments were mostly performed in transformed human cell lines and little evidence for nuclear targeting and E2F-binding of prohibitins has been found in actual humans or any other organism.<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=McClung JK, Jupe ER, Liu XT, Dell'Orco RT |title=Prohibitin: potential role in senescence, development, and tumor suppression. |journal=Exp. Gerontol. |volume=30 |issue= 2 |pages= 99–124 |year= 1996 |pmid= 8591812 |doi= }}<br /> *{{cite journal | author=Dell'Orco RT, McClung JK, Jupe ER, Liu XT |title=Prohibitin and the senescent phenotype. |journal=Exp. Gerontol. |volume=31 |issue= 1-2 |pages= 245–52 |year= 1996 |pmid= 8706794 |doi= }}<br /> *{{cite journal | author=Mishra S, Murphy LC, Nyomba BL, Murphy LJ |title=Prohibitin: a potential target for new therapeutics. |journal=Trends in molecular medicine |volume=11 |issue= 4 |pages= 192–7 |year= 2005 |pmid= 15823758 |doi= 10.1016/j.molmed.2005.02.004 }}<br /> *{{cite journal | author=Rajalingam K, Rudel T |title=Ras-Raf signaling needs prohibitin. |journal=Cell Cycle |volume=4 |issue= 11 |pages= 1503–5 |year= 2007 |pmid= 16294014 |doi= }}<br /> *{{cite journal | author=Sato T, Saito H, Swensen J, ''et al.'' |title=The human prohibitin gene located on chromosome 17q21 is mutated in sporadic breast cancer. |journal=Cancer Res. |volume=52 |issue= 6 |pages= 1643–6 |year= 1992 |pmid= 1540973 |doi= }}<br /> *{{cite journal | author=Dawson SJ, White LA |title=Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin. |journal=J. Infect. |volume=24 |issue= 3 |pages= 317–20 |year= 1992 |pmid= 1602151 |doi= }}<br /> *{{cite journal | author=White JJ, Ledbetter DH, Eddy RL, ''et al.'' |title=Assignment of the human prohibitin gene (PHB) to chromosome 17 and identification of a DNA polymorphism. |journal=Genomics |volume=11 |issue= 1 |pages= 228–30 |year= 1992 |pmid= 1684951 |doi= }}<br /> *{{cite journal | author=Altus MS, Wood CM, Stewart DA, ''et al.'' |title=Regions of evolutionary conservation between the rat and human prohibitin-encoding genes. |journal=Gene |volume=158 |issue= 2 |pages= 291–4 |year= 1995 |pmid= 7607556 |doi= }}<br /> *{{cite journal | author=Ikonen E, Fiedler K, Parton RG, Simons K |title=Prohibitin, an antiproliferative protein, is localized to mitochondria. |journal=FEBS Lett. |volume=358 |issue= 3 |pages= 273–7 |year= 1995 |pmid= 7843414 |doi= }}<br /> *{{cite journal | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi= }}<br /> *{{cite journal | author=Sato T, Sakamoto T, Takita K, ''et al.'' |title=The human prohibitin (PHB) gene family and its somatic mutations in human tumors. |journal=Genomics |volume=17 |issue= 3 |pages= 762–4 |year= 1993 |pmid= 8244394 |doi= }}<br /> *{{cite journal | author=Jupe ER, Liu XT, Kiehlbauch JL, ''et al.'' |title=The 3' untranslated region of prohibitin and cellular immortalization. |journal=Exp. Cell Res. |volume=224 |issue= 1 |pages= 128–35 |year= 1996 |pmid= 8612677 |doi= 10.1006/excr.1996.0120 }}<br /> *{{cite journal | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi= }}<br /> *{{cite journal | author=Rasmussen RK, Ji H, Eddes JS, ''et al.'' |title=Two-dimensional electrophoretic analysis of mixed lineage kinase 2 N-terminal domain binding proteins. |journal=Electrophoresis |volume=19 |issue= 5 |pages= 809–17 |year= 1998 |pmid= 9629920 |doi= 10.1002/elps.1150190535 }}<br /> *{{cite journal | author=Wang S, Nath N, Adlam M, Chellappan S |title=Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function. |journal=Oncogene |volume=18 |issue= 23 |pages= 3501–10 |year= 1999 |pmid= 10376528 |doi= 10.1038/sj.onc.1202684 }}<br /> *{{cite journal | author=Wang S, Nath N, Fusaro G, Chellappan S |title=Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. |journal=Mol. Cell. Biol. |volume=19 |issue= 11 |pages= 7447–60 |year= 1999 |pmid= 10523633 |doi= }}<br /> *{{cite journal | author=Hartley JL, Temple GF, Brasch MA |title=DNA cloning using in vitro site-specific recombination. |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788–95 |year= 2001 |pmid= 11076863 |doi= }}<br /> *{{cite journal | author=Coates PJ, Nenutil R, McGregor A, ''et al.'' |title=Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. |journal=Exp. Cell Res. |volume=265 |issue= 2 |pages= 262–73 |year= 2001 |pmid= 11302691 |doi= 10.1006/excr.2001.5166 }}<br /> }}<br /> *{{cite journal | author=Van Aken O, Pecenkova T, van de Cotte B, ''et al.'' |title=Mitochondrial type-I prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development. |journal=Plant J. |volume=52 |issue= 5 |pages= 850-864 |year= 2007 |pmid= 17883375 |doi= }}<br /> {{refend}}<br /> <br /> {{gene-17-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Retinoblastoma-like_protein_1&diff=52170780 Retinoblastoma-like protein 1 2008-07-09T06:23:33Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=5933}}<br /> '''Retinoblastoma-like 1 (p107)''', also known as '''RBL1''', is a human [[gene]].&lt;ref name=&quot;entrez&quot; /&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The protein encoded by this gene is similar in sequence and possibly function to the product of the retinoblastoma 1 (RB1) gene. The RB1 gene product is a tumor suppressor protein that appears to be involved in cell cycle regulation, as it is phosphorylated in the S to M phase transition and is dephosphorylated in the G1 phase of the cell cycle. Both the RB1 protein and the product of this gene can form a complex with adenovirus E1A protein and SV40 large T-antigen, with the SV40 large T-antigen binding only to the unphosphorylated form of each protein. In addition, both proteins can inhibit the transcription of cell cycle genes containing E2F binding sites in their promoters. Due to the sequence and biochemical similarities with the RB1 protein, it is thought that the protein encoded by this gene may also be a tumor suppressor. Two transcript variants encoding different isoforms have been found for this gene.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: RBL1 retinoblastoma-like 1 (p107)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=5933| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==See also==<br /> * [[Pocket protein family]]<br /> <br /> ==References==<br /> {{reflist}}<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Faha B, Ewen ME, Tsai LH, ''et al.'' |title=Interaction between human cyclin A and adenovirus E1A-associated p107 protein. |journal=Science |volume=255 |issue= 5040 |pages= 87–90 |year= 1992 |pmid= 1532458 |doi= }}<br /> *{{cite journal | author=Ewen ME, Xing YG, Lawrence JB, Livingston DM |title=Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. |journal=Cell |volume=66 |issue= 6 |pages= 1155–64 |year= 1991 |pmid= 1833063 |doi= }}<br /> *{{cite journal | author=Datta PK, Raychaudhuri P, Bagchi S |title=Association of p107 with Sp1: genetically separable regions of p107 are involved in regulation of E2F- and Sp1-dependent transcription. |journal=Mol. Cell. Biol. |volume=15 |issue= 10 |pages= 5444–52 |year= 1995 |pmid= 7565695 |doi= }}<br /> *{{cite journal | author=Zhu L, Zhu L, Xie E, Chang LS |title=Differential roles of two tandem E2F sites in repression of the human p107 promoter by retinoblastoma and p107 proteins. |journal=Mol. Cell. Biol. |volume=15 |issue= 7 |pages= 3552–62 |year= 1995 |pmid= 7791762 |doi= }}<br /> *{{cite journal | author=Sardet C, Vidal M, Cobrinik D, ''et al.'' |title=E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=92 |issue= 6 |pages= 2403–7 |year= 1995 |pmid= 7892279 |doi= }}<br /> *{{cite journal | author=Kim YW, Otterson GA, Kratzke RA, ''et al.'' |title=Differential specificity for binding of retinoblastoma binding protein 2 to RB, p107, and TATA-binding protein. |journal=Mol. Cell. Biol. |volume=14 |issue= 11 |pages= 7256–64 |year= 1994 |pmid= 7935440 |doi= }}<br /> *{{cite journal | author=Ginsberg D, Vairo G, Chittenden T, ''et al.'' |title=E2F-4, a new member of the E2F transcription factor family, interacts with p107. |journal=Genes Dev. |volume=8 |issue= 22 |pages= 2665–79 |year= 1994 |pmid= 7958924 |doi= }}<br /> *{{cite journal | author=Beijersbergen RL, Kerkhoven RM, Zhu L, ''et al.'' |title=E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. |journal=Genes Dev. |volume=8 |issue= 22 |pages= 2680–90 |year= 1994 |pmid= 7958925 |doi= }}<br /> *{{cite journal | author=Beijersbergen RL, Hijmans EM, Zhu L, Bernards R |title=Interaction of c-Myc with the pRb-related protein p107 results in inhibition of c-Myc-mediated transactivation. |journal=EMBO J. |volume=13 |issue= 17 |pages= 4080–6 |year= 1994 |pmid= 8076603 |doi= }}<br /> *{{cite journal | author=Dyson N, Dembski M, Fattaey A, ''et al.'' |title=Analysis of p107-associated proteins: p107 associates with a form of E2F that differs from pRB-associated E2F-1. |journal=J. Virol. |volume=67 |issue= 12 |pages= 7641–7 |year= 1993 |pmid= 8230483 |doi= }}<br /> *{{cite journal | author=Zhu L, van den Heuvel S, Helin K, ''et al.'' |title=Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. |journal=Genes Dev. |volume=7 |issue= 7A |pages= 1111–25 |year= 1993 |pmid= 8319904 |doi= }}<br /> *{{cite journal | author=Ikeda MA, Jakoi L, Nevins JR |title=A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 8 |pages= 3215–20 |year= 1996 |pmid= 8622916 |doi= }}<br /> *{{cite journal | author=Xiao ZX, Ginsberg D, Ewen M, Livingston DM |title=Regulation of the retinoblastoma protein-related protein p107 by G1 cyclin-associated kinases. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 10 |pages= 4633–7 |year= 1996 |pmid= 8643455 |doi= }}<br /> *{{cite journal | author=Vidal M, Brachmann RK, Fattaey A, ''et al.'' |title=Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 19 |pages= 10315–20 |year= 1996 |pmid= 8816797 |doi= }}<br /> *{{cite journal | author=Shao Z, Siegert JL, Ruppert S, Robbins PD |title=Rb interacts with TAF(II)250/TFIID through multiple domains. |journal=Oncogene |volume=15 |issue= 4 |pages= 385–92 |year= 1997 |pmid= 9242374 |doi= 10.1038/sj.onc.1201204 }}<br /> *{{cite journal | author=Verona R, Moberg K, Estes S, ''et al.'' |title=E2F activity is regulated by cell cycle-dependent changes in subcellular localization. |journal=Mol. Cell. Biol. |volume=17 |issue= 12 |pages= 7268–82 |year= 1997 |pmid= 9372959 |doi= }}<br /> *{{cite journal | author=Trimarchi JM, Fairchild B, Verona R, ''et al.'' |title=E2F-6, a member of the E2F family that can behave as a transcriptional repressor. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 6 |pages= 2850–5 |year= 1998 |pmid= 9501179 |doi= }}<br /> *{{cite journal | author=Sterner JM, Dew-Knight S, Musahl C, ''et al.'' |title=Negative regulation of DNA replication by the retinoblastoma protein is mediated by its association with MCM7. |journal=Mol. Cell. Biol. |volume=18 |issue= 5 |pages= 2748–57 |year= 1998 |pmid= 9566894 |doi= }}<br /> *{{cite journal | author=Woitach JT, Zhang M, Niu CH, Thorgeirsson SS |title=A retinoblastoma-binding protein that affects cell-cycle control and confers transforming ability. |journal=Nat. Genet. |volume=19 |issue= 4 |pages= 371–4 |year= 1998 |pmid= 9697699 |doi= 10.1038/1258 }}<br /> *{{cite journal | author=Veal E, Eisenstein M, Tseng ZH, Gill G |title=A cellular repressor of E1A-stimulated genes that inhibits activation by E2F. |journal=Mol. Cell. Biol. |volume=18 |issue= 9 |pages= 5032–41 |year= 1998 |pmid= 9710587 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> == External links ==<br /> * {{MeshName|RBL1+protein,+human}}<br /> <br /> <br /> {{gene-20-stub}}<br /> {{NLM content}}<br /> {{Transcription factors}}<br /> [[Category:Transcription factors]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=%CE%95-Globin&diff=100455633 Ε-Globin 2008-07-09T06:13:24Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>&lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. <br /> --&gt;<br /> <br /> {{PBB|geneid=3046}}<br /> '''Hemoglobin, epsilon 1''', also known as '''HBE1''', is a human [[gene]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The epsilon globin gene (HBE) is normally expressed in the embryonic yolk sac: two epsilon chains together with two zeta chains (an alpha-like globin) constitute the embryonic hemoglobin Hb Gower I; two epsilon chains together with two alpha chains form the embryonic Hb Gower II. Both of these embryonic hemoglobins are normally supplanted by fetal, and later, adult hemoglobin. The five beta-like globin genes are found within a 45 kb cluster on chromosome 11 in the following order: 5'-epsilon - G-gamma - A-gamma - delta - beta-3'&lt;ref&gt;{{cite web | title = Entrez Gene: HBE1 hemoglobin, epsilon 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3046| accessdate = }}&lt;/ref&gt;<br /> }}<br /> ==See also==<br /> *[[hemoglobin]]<br /> *[[Human β-globin locus]]<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Clegg JB |title=Embryonic hemoglobin: sequence of the epsilon and zeta chains. |journal=Tex. Rep. Biol. Med. |volume=40 |issue= |pages= 23–8 |year= 1982 |pmid= 6172865 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi= }}<br /> *{{cite journal | author=Chang JC, Kan YW |title=beta 0 thalassemia, a nonsense mutation in man. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=76 |issue= 6 |pages= 2886–9 |year= 1979 |pmid= 88735 |doi= }}<br /> *{{cite journal | author=Proudfoot NJ, Baralle FE |title=Molecular cloning of human epsilon-globin gene. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=76 |issue= 11 |pages= 5435–9 |year= 1980 |pmid= 160554 |doi= }}<br /> *{{cite journal | author=Proudfoot NJ, Brownlee GG |title=3' non-coding region sequences in eukaryotic messenger RNA. |journal=Nature |volume=263 |issue= 5574 |pages= 211–4 |year= 1976 |pmid= 822353 |doi= }}<br /> *{{cite journal | author=Marotta CA, Forget BG, Cohne-Solal M, ''et al.'' |title=Human beta-globin messenger RNA. I. Nucleotide sequences derived from complementary RNA. |journal=J. Biol. Chem. |volume=252 |issue= 14 |pages= 5019–31 |year= 1977 |pmid= 873928 |doi= }}<br /> *{{cite journal | author=Gelinas R, Endlich B, Pfeiffer C, ''et al.'' |title=G to A substitution in the distal CCAAT box of the A gamma-globin gene in Greek hereditary persistence of fetal haemoglobin. |journal=Nature |volume=313 |issue= 6000 |pages= 323–5 |year= 1985 |pmid= 2578619 |doi= }}<br /> *{{cite journal | author=Collins FS, Metherall JE, Yamakawa M, ''et al.'' |title=A point mutation in the A gamma-globin gene promoter in Greek hereditary persistence of fetal haemoglobin. |journal=Nature |volume=313 |issue= 6000 |pages= 325–6 |year= 1985 |pmid= 2578620 |doi= }}<br /> *{{cite journal | author=Lang KM, Spritz RA |title=Cloning specific complete polyadenylylated 3'-terminal cDNA segments. |journal=Gene |volume=33 |issue= 2 |pages= 191–6 |year= 1985 |pmid= 2581851 |doi= }}<br /> *{{cite journal | author=Ley TJ, Maloney KA, Gordon JI, Schwartz AL |title=Globin gene expression in erythroid human fetal liver cells. |journal=J. Clin. Invest. |volume=83 |issue= 3 |pages= 1032–8 |year= 1989 |pmid= 2921315 |doi= }}<br /> *{{cite journal | author=Chabot B, Black DL, LeMaster DM, Steitz JA |title=The 3' splice site of pre-messenger RNA is recognized by a small nuclear ribonucleoprotein. |journal=Science |volume=230 |issue= 4732 |pages= 1344–9 |year= 1986 |pmid= 2933810 |doi= }}<br /> *{{cite journal | author=Engelke DR, Hoener PA, Collins FS |title=Direct sequencing of enzymatically amplified human genomic DNA. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=85 |issue= 2 |pages= 544–8 |year= 1988 |pmid= 3267215 |doi= }}<br /> *{{cite journal | author=Fei YJ, Stoming TA, Efremov GD, ''et al.'' |title=Beta-thalassemia due to a T----A mutation within the ATA box. |journal=Biochem. Biophys. Res. Commun. |volume=153 |issue= 2 |pages= 741–7 |year= 1988 |pmid= 3382401 |doi= }}<br /> *{{cite journal | author=Prchal JT, Cashman DP, Kan YW |title=Hemoglobin Long Island is caused by a single mutation (adenine to cytosine) resulting in a failure to cleave amino-terminal methionine. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=83 |issue= 1 |pages= 24–7 |year= 1986 |pmid= 3455755 |doi= }}<br /> *{{cite journal | author=van Santen VL, Spritz RA |title=mRNA precursor splicing in vivo: sequence requirements determined by deletion analysis of an intervening sequence. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=82 |issue= 9 |pages= 2885–9 |year= 1985 |pmid= 3857622 |doi= }}<br /> *{{cite journal | author=Ruskin B, Greene JM, Green MR |title=Cryptic branch point activation allows accurate in vitro splicing of human beta-globin intron mutants. |journal=Cell |volume=41 |issue= 3 |pages= 833–44 |year= 1985 |pmid= 3879973 |doi= }}<br /> *{{cite journal | author=Tuan D, Solomon W, Li Q, London IM |title=The &quot;beta-like-globin&quot; gene domain in human erythroid cells. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=82 |issue= 19 |pages= 6384–8 |year= 1985 |pmid= 3879975 |doi= }}<br /> *{{cite journal | author=Orkin SH, Antonarakis SE, Kazazian HH |title=Base substitution at position -88 in a beta-thalassemic globin gene. Further evidence for the role of distal promoter element ACACCC. |journal=J. Biol. Chem. |volume=259 |issue= 14 |pages= 8679–81 |year= 1984 |pmid= 6086605 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> {{NLM content}}<br /> {{protein-stub}}<br /> <br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hom%C3%B6oboxprotein_DLX-6&diff=98694790 Homöoboxprotein DLX-6 2008-07-09T05:19:39Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=1750}}<br /> '''Distal-less homeobox 6''', also known as '''DLX6''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX6 distal-less homeobox 6| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1750| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = This gene encodes a member of a homeobox transcription factor gene family similar to the Drosophila distal-less gene. This family is comprised of at least 6 different members that encode proteins with roles in forebrain and craniofacial development. This gene is in a tail-to-tail configuration with another member of the family on the long arm of chromosome 7.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX6 distal-less homeobox 6| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1750| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Simeone A, Acampora D, Pannese M, ''et al.'' |title=Cloning and characterization of two members of the vertebrate Dlx gene family. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 6 |pages= 2250–4 |year= 1994 |pmid= 7907794 |doi= }}<br /> *{{cite journal | author=Crackower MA, Scherer SW, Rommens JM, ''et al.'' |title=Characterization of the split hand/split foot malformation locus SHFM1 at 7q21.3-q22.1 and analysis of a candidate gene for its expression during limb development. |journal=Hum. Mol. Genet. |volume=5 |issue= 5 |pages= 571–9 |year= 1997 |pmid= 8733122 |doi= }}<br /> *{{cite journal | author=Charité J, McFadden DG, Merlo G, ''et al.'' |title=Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer. |journal=Genes Dev. |volume=15 |issue= 22 |pages= 3039–49 |year= 2001 |pmid= 11711438 |doi= 10.1101/gad.931701 }}<br /> *{{cite journal | author=Depew MJ, Lufkin T, Rubenstein JL |title=Specification of jaw subdivisions by Dlx genes. |journal=Science |volume=298 |issue= 5592 |pages= 381–5 |year= 2002 |pmid= 12193642 |doi= 10.1126/science.1075703 }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Nabi R, Zhong H, Serajee FJ, Huq AH |title=No association between single nucleotide polymorphisms in DLX6 and Piccolo genes at 7q21-q22 and autism. |journal=Am. J. Med. Genet. B Neuropsychiatr. Genet. |volume=119 |issue= 1 |pages= 98–101 |year= 2004 |pmid= 12707945 |doi= 10.1002/ajmg.b.10012 }}<br /> *{{cite journal | author=Hillier LW, Fulton RS, Fulton LA, ''et al.'' |title=The DNA sequence of human chromosome 7. |journal=Nature |volume=424 |issue= 6945 |pages= 157–64 |year= 2003 |pmid= 12853948 |doi= 10.1038/nature01782 }}<br /> *{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=Schüle B, Li HH, Fisch-Kohl C, ''et al.'' |title=DLX5 and DLX6 expression is biallelic and not modulated by MeCP2 deficiency. |journal=Am. J. Hum. Genet. |volume=81 |issue= 3 |pages= 492–506 |year= 2007 |pmid= 17701895 |doi= 10.1086/520063 }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-7-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hom%C3%B6oboxprotein_DLX-1&diff=98964666 Homöoboxprotein DLX-1 2008-07-09T05:19:20Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=1745}}<br /> '''Distal-less homeobox 1''', also known as '''DLX1''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX1 distal-less homeobox 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1745| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = This gene encodes a member of a homeobox transcription factor gene family similar to the Drosophila distal-less gene. The encoded protein is localized to the nucleus where it may function as a transcriptional regulator of signals from multiple TGF-{beta} superfamily members. The encoded protein may play a role in the control of craniofacial patterning and the differentiation and survival of inhibitory neurons in the forebrain. This gene is located in a tail-to-tail configuration with another member of the family on the long arm of chromosome 2. Alternatively spliced transcript variants encoding different isoforms have been described.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: DLX1 distal-less homeobox 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=1745| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Simeone A, Acampora D, Pannese M, ''et al.'' |title=Cloning and characterization of two members of the vertebrate Dlx gene family. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 6 |pages= 2250–4 |year= 1994 |pmid= 7907794 |doi= }}<br /> *{{cite journal | author=Letinic K, Zoncu R, Rakic P |title=Origin of GABAergic neurons in the human neocortex. |journal=Nature |volume=417 |issue= 6889 |pages= 645–9 |year= 2002 |pmid= 12050665 |doi= 10.1038/nature00779 }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Chiba S, Takeshita K, Imai Y, ''et al.'' |title=Homeoprotein DLX-1 interacts with Smad4 and blocks a signaling pathway from activin A in hematopoietic cells. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=100 |issue= 26 |pages= 15577–82 |year= 2004 |pmid= 14671321 |doi= 10.1073/pnas.2536757100 }}<br /> *{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}<br /> *{{cite journal | author=Zhou QP, Le TN, Qiu X, ''et al.'' |title=Identification of a direct Dlx homeodomain target in the developing mouse forebrain and retina by optimization of chromatin immunoprecipitation. |journal=Nucleic Acids Res. |volume=32 |issue= 3 |pages= 884–92 |year= 2004 |pmid= 14769946 |doi= 10.1093/nar/gkh233 }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=Rual JF, Venkatesan K, Hao T, ''et al.'' |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}<br /> *{{cite journal | author=Hamilton SP, Woo JM, Carlson EJ, ''et al.'' |title=Analysis of four DLX homeobox genes in autistic probands. |journal=BMC Genet. |volume=6 |issue= |pages= 52 |year= 2006 |pmid= 16266434 |doi= 10.1186/1471-2156-6-52 }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-2-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=H%C3%A4moglobin_theta-1&diff=101180110 Hämoglobin theta-1 2008-07-09T02:15:05Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=3049}}<br /> '''Hemoglobin, theta 1''', also known as '''HBQ1''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HBQ1 hemoglobin, theta 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3049| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Theta-globin mRNA is found in human fetal erythroid tissue but not in adult erythroid or other nonerythroid tissue. The theta-1 gene may be expressed very early in embryonic life, perhaps sometime before 5 weeks. Theta-1 is a member of the human alpha-globin gene cluster that involves five functional genes and two pseudogenes. The order of genes is: 5' - zeta - pseudozeta - mu - pseudoalpha-2 -pseudoalpha-1 - alpha-2 - alpha-1 - theta-1 - 3'. Research supports a transcriptionally active role for the gene and a functional role for the peptide in specific cells, possibly those of early erythroid tissue.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HBQ1 hemoglobin, theta 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3049| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi= }}<br /> *{{cite journal | author=Kim JH, Yu CY, Bailey A, ''et al.'' |title=Unique sequence organization and erythroid cell-specific nuclear factor-binding of mammalian theta 1 globin promoters. |journal=Nucleic Acids Res. |volume=17 |issue= 14 |pages= 5687–700 |year= 1989 |pmid= 2569721 |doi= }}<br /> *{{cite journal | author=Ley TJ, Maloney KA, Gordon JI, Schwartz AL |title=Globin gene expression in erythroid human fetal liver cells. |journal=J. Clin. Invest. |volume=83 |issue= 3 |pages= 1032–8 |year= 1989 |pmid= 2921315 |doi= }}<br /> *{{cite journal | author=Gonzalez-Redondo JM, Han IS, Gu YC, Huisman TH |title=Nucleotide sequence of the human theta 1-globin gene. |journal=Biochem. Genet. |volume=26 |issue= 3-4 |pages= 207–11 |year= 1988 |pmid= 3408475 |doi= }}<br /> *{{cite journal | author=Hsu SL, Marks J, Shaw JP, ''et al.'' |title=Structure and expression of the human theta 1 globin gene. |journal=Nature |volume=331 |issue= 6151 |pages= 94–6 |year= 1988 |pmid= 3422341 |doi= 10.1038/331094a0 }}<br /> *{{cite journal | author=Daniels RJ, Peden JF, Lloyd C, ''et al.'' |title=Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16. |journal=Hum. Mol. Genet. |volume=10 |issue= 4 |pages= 339–52 |year= 2001 |pmid= 11157797 |doi= }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}<br /> *{{cite journal | author=De Gobbi M, Viprakasit V, Hughes JR, ''et al.'' |title=A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. |journal=Science |volume=312 |issue= 5777 |pages= 1215–7 |year= 2006 |pmid= 16728641 |doi= 10.1126/science.1126431 }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-16-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Matrix-Metallopeptidase_20&diff=52205839 Matrix-Metallopeptidase 20 2008-07-08T15:50:03Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=9313}}<br /> '''Matrix metallopeptidase 20 (enamelysin)''', also known as '''MMP20''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: MMP20 matrix metallopeptidase 20 (enamelysin)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=9313| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes, such as arthritis and metastasis. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. The protein encoded by this gene degrades amelogenin, the major protein component of dental enamel matrix, and so the protein is thought to play a role in tooth enamel formation. A mutation in this gene, which alters the normal splice pattern and results in premature termination of the encoded protein, has been associated with amelogenesis imperfecta. This gene is part of a cluster of MMP genes that localizes to chromosome 11q22.3.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: MMP20 matrix metallopeptidase 20 (enamelysin)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=9313| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Nagase H, Woessner JF |title=Matrix metalloproteinases. |journal=J. Biol. Chem. |volume=274 |issue= 31 |pages= 21491–4 |year= 1999 |pmid= 10419448 |doi= }}<br /> *{{cite journal | author=Bartlett JD, Simmer JP |title=Proteinases in developing dental enamel. |journal=Crit. Rev. Oral Biol. Med. |volume=10 |issue= 4 |pages= 425–41 |year= 2000 |pmid= 10634581 |doi= }}<br /> *{{cite journal | author=Pendás AM, Santamaría I, Alvarez MV, ''et al.'' |title=Fine physical mapping of the human matrix metalloproteinase genes clustered on chromosome 11q22.3. |journal=Genomics |volume=37 |issue= 2 |pages= 266–8 |year= 1997 |pmid= 8921407 |doi= }}<br /> *{{cite journal | author=Llano E, Pendás AM, Knäuper V, ''et al.'' |title=Identification and structural and functional characterization of human enamelysin (MMP-20). |journal=Biochemistry |volume=36 |issue= 49 |pages= 15101–8 |year= 1998 |pmid= 9398237 |doi= 10.1021/bi972120y }}<br /> *{{cite journal | author=Stracke JO, Fosang AJ, Last K, ''et al.'' |title=Matrix metalloproteinases 19 and 20 cleave aggrecan and cartilage oligomeric matrix protein (COMP). |journal=FEBS Lett. |volume=478 |issue= 1-2 |pages= 52–6 |year= 2000 |pmid= 10922468 |doi= }}<br /> *{{cite journal | author=Terp GE, Christensen IT, Jørgensen FS |title=Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes. |journal=J. Biomol. Struct. Dyn. |volume=17 |issue= 6 |pages= 933–46 |year= 2000 |pmid= 10949161 |doi= }}<br /> *{{cite journal | author=Väänänen A, Srinivas R, Parikka M, ''et al.'' |title=Expression and regulation of MMP-20 in human tongue carcinoma cells. |journal=J. Dent. Res. |volume=80 |issue= 10 |pages= 1884–9 |year= 2001 |pmid= 11706946 |doi= }}<br /> *{{cite journal | author=Väänänen A, Tjäderhane L, Eklund L, ''et al.'' |title=Expression of collagen XVIII and MMP-20 in developing teeth and odontogenic tumors. |journal=Matrix Biol. |volume=23 |issue= 3 |pages= 153–61 |year= 2005 |pmid= 15296943 |doi= 10.1016/j.matbio.2004.04.003 }}<br /> *{{cite journal | author=Kim JW, Simmer JP, Hart TC, ''et al.'' |title=MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. |journal=J. Med. Genet. |volume=42 |issue= 3 |pages= 271–5 |year= 2006 |pmid= 15744043 |doi= 10.1136/jmg.2004.024505 }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-11-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=VEGF-C&diff=140131951 VEGF-C 2008-07-08T11:01:46Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=7424}}<br /> '''Vascular endothelial growth factor C''' is a [[VEGF]]. The human [[gene]] encoding it is '''VEGFC'''.<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title =<br /> | summary_text = The protein encoded by this gene is a member of the platelet-derived growth factor/vascular endothelial growth factor ([[PDGF]]/VEGF) family, is active in '''angiogenesis''', '''[[lymphangiogenesis]]''' &lt;ref&gt;{{cite web | title = Oncogene: Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis| url = http://www.nature.com/onc/journal/v19/n49/abs/1203855a.html| accessdate = }}&lt;/ref&gt; and endothelial cell growth and survival, and can also affect the permeability of blood vessels. This secreted protein undergoes a complex proteolytic maturation, generating multiple processed forms which bind and activate [[VEGFR-3]] receptors. Only the fully processed form can bind and activate [[VEGFR-2]] receptors. This protein is structurally and functionally similar to vascular endothelial growth factor D ([[VEGF-D]]).&lt;ref&gt;{{cite web | title = Entrez Gene: VEGFC vascular endothelial growth factor C| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=7424| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==Pathological VEGF-C Expression==<br /> '''[[Lymphedema]]''' is caused by an imbalance between [[lymphatic vessel]] formation and absorption. Experimentally this can be created by [[overexpression]] of VEGF-C<br /> '''[[Lymphangioma]]''':<br /> [[Overexpression]] of VEGF-C causes lymphatics to enlarge possibly facilitates metastasis.<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading<br /> | citations =<br /> *{{cite journal | author=Orpana A, Salven P |title=Angiogenic and lymphangiogenic molecules in hematological malignancies. |journal=Leuk. Lymphoma |volume=43 |issue= 2 |pages= 219–24 |year= 2003 |pmid= 11999550 |doi= }}<br /> *{{cite journal | author=Joukov V, Pajusola K, Kaipainen A, ''et al.'' |title=A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. |journal=EMBO J. |volume=15 |issue= 7 |pages= 1751 |year= 1996 |pmid= 8612600 |doi= }}<br /> *{{cite journal | author=Joukov V, Pajusola K, Kaipainen A, ''et al.'' |title=A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. |journal=EMBO J. |volume=15 |issue= 2 |pages= 290–98 |year= 1996 |pmid= 8617204 |doi= }}<br /> *{{cite journal | author=Paavonen K, Horelli-Kuitunen N, Chilov D, ''et al.'' |title=Novel human vascular endothelial growth factor genes VEGF-B and VEGF-C localize to chromosomes 11q13 and 4q34, respectively. |journal=Circulation |volume=93 |issue= 6 |pages= 1079–82 |year= 1996 |pmid= 8653826 |doi= }}<br /> *{{cite journal | author=Lee J, Gray A, Yuan J, ''et al.'' |title=Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 5 |pages= 1988–92 |year= 1996 |pmid= 8700872 |doi= }}<br /> *{{cite journal | author=Joukov V, Sorsa T, Kumar V, ''et al.'' |title=Proteolytic processing regulates receptor specificity and activity of VEGF-C. |journal=EMBO J. |volume=16 |issue= 13 |pages= 3898–911 |year= 1997 |pmid= 9233800 |doi= 10.1093/emboj/16.13.3898 }}<br /> *{{cite journal | author=Fitz LJ, Morris JC, Towler P, ''et al.'' |title=Characterization of murine Flt4 ligand/VEGF-C. |journal=Oncogene |volume=15 |issue= 5 |pages= 613–8 |year= 1997 |pmid= 9247316 |doi= 10.1038/sj.onc.1201191 }}<br /> *{{cite journal | author=Dunk C, Ahmed A |title=Expression of VEGF-C and activation of its receptors VEGFR-2 and VEGFR-3 in trophoblast. |journal=Histol. Histopathol. |volume=16 |issue= 2 |pages= 359–75 |year= 2001 |pmid= 11332691 |doi= }}<br /> *{{cite journal | author=Dias S, Choy M, Alitalo K, Rafii S |title=Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. |journal=Blood |volume=99 |issue= 6 |pages= 2179–84 |year= 2002 |pmid= 11877295 |doi= }}<br /> *{{cite journal | author=Ueda M, Terai Y, Yamashita Y, ''et al.'' |title=Correlation between vascular endothelial growth factor-C expression and invasion phenotype in cervical carcinomas. |journal=Int. J. Cancer |volume=98 |issue= 3 |pages= 335–43 |year= 2002 |pmid= 11920583 |doi= }}<br /> *{{cite journal | author=Witte D, Thomas A, Ali N, ''et al.'' |title=Expression of the vascular endothelial growth factor receptor-3 (VEGFR-3) and its ligand VEGF-C in human colorectal adenocarcinoma. |journal=Anticancer Res. |volume=22 |issue= 3 |pages= 1463–6 |year= 2002 |pmid= 12168824 |doi= }}<br /> *{{cite journal | author=Schoppmann SF, Birner P, Stöckl J, ''et al.'' |title=Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. |journal=Am. J. Pathol. |volume=161 |issue= 3 |pages= 947–56 |year= 2002 |pmid= 12213723 |doi= }}<br /> *{{cite journal | author=Shin HY, Smith ML, Toy KJ, ''et al.'' |title=VEGF-C mediates cyclic pressure-induced endothelial cell proliferation. |journal=Physiol. Genomics |volume=11 |issue= 3 |pages= 245–51 |year= 2002 |pmid= 12388793 |doi= 10.1152/physiolgenomics.00068.2002 }}<br /> *{{cite journal | author=Yu DH, Wen YM, Sun JD, ''et al.'' |title=[Relationship among expression of vascular endothelial growth factor-C(VEGF-C), angiogenesis, lymphangiogenesis, and lymphatic metastasis in oral cancer] |journal=Ai Zheng |volume=21 |issue= 3 |pages= 319–22 |year= 2003 |pmid= 12452004 |doi= }}<br /> *{{cite journal | author=Nakashima T, Kondoh S, Kitoh H, ''et al.'' |title=Vascular endothelial growth factor-C expression in human gallbladder cancer and its relationship to lymph node metastasis. |journal=Int. J. Mol. Med. |volume=11 |issue= 1 |pages= 33–9 |year= 2003 |pmid= 12469214 |doi= }}<br /> *{{cite journal | author=Tsai PW, Shiah SG, Lin MT, ''et al.'' |title=Up-regulation of vascular endothelial growth factor C in breast cancer cells by heregulin-beta 1. A critical role of p38/nuclear factor-kappa B signaling pathway. |journal=J. Biol. Chem. |volume=278 |issue= 8 |pages= 5750–9 |year= 2003 |pmid= 12471041 |doi= 10.1074/jbc.M204863200 }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Masood R, Kundra A, Zhu S, ''et al.'' |title=Malignant mesothelioma growth inhibition by agents that target the VEGF and VEGF-C autocrine loops. |journal=Int. J. Cancer |volume=104 |issue= 5 |pages= 603–10 |year= 2003 |pmid= 12594815 |doi= 10.1002/ijc.10996 }}<br /> *{{cite journal | author=Ohno M, Nakamura T, Kunimoto Y, ''et al.'' |title=Lymphagenesis correlates with expression of vascular endothelial growth factor-C in colorectal cancer. |journal=Oncol. Rep. |volume=10 |issue= 4 |pages= 939–43 |year= 2004 |pmid= 12792749 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-4-stub}}<br /> <br /> {{Angiogenic proteins}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes<br /> | require_manual_inspection = no<br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=HBG1&diff=100466444 HBG1 2008-07-08T10:45:46Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=3047}}<br /> '''Hemoglobin, gamma A''', also known as '''HBG1''', is a human [[gene]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The gamma globin genes (HBG1 and HBG2) are normally expressed in the fetal liver, spleen and bone marrow. Two gamma chains together with two alpha chains constitute fetal hemoglobin (HbF) which is normally replaced by adult hemoglobin (HbA) at birth. In some beta-thalassemias and related conditions, gamma chain production continues into adulthood. The two types of gamma chains differ at residue 136 where glycine is found in the G-gamma product (HBG2) and alanine is found in the A-gamma product (HBG1). The former is predominant at birth. The order of the genes in the beta-globin cluster is: 5'-epsilon -- gamma-G -- gamma-A -- delta -- beta--3'.&lt;ref&gt;{{cite web | title = Entrez Gene: HBG1 hemoglobin, gamma A| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3047| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Huisman TH, Kutlar F, Gu LH |title=Gamma chain abnormalities and gamma-globin gene rearrangements in newborn babies of various populations. |journal=Hemoglobin |volume=15 |issue= 5 |pages= 349–79 |year= 1992 |pmid= 1802881 |doi= }}<br /> *{{cite journal | author=Gelinas R, Yagi M, Endlich B, ''et al.'' |title=Sequences of G gamma, A gamma, and beta genes of the Greek (A gamma) HPFH mutant: evidence for a distal CCAAT box mutation in the A gamma gene. |journal=Prog. Clin. Biol. Res. |volume=191 |issue= |pages= 125–39 |year= 1985 |pmid= 2413469 |doi= }}<br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi= }}<br /> *{{cite journal | author=Anderson NL, Anderson NG |title=The human plasma proteome: history, character, and diagnostic prospects. |journal=Mol. Cell Proteomics |volume=1 |issue= 11 |pages= 845–67 |year= 2003 |pmid= 12488461 |doi= }}<br /> *{{cite journal | author=Chang JC, Kan YW |title=beta 0 thalassemia, a nonsense mutation in man. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=76 |issue= 6 |pages= 2886–9 |year= 1979 |pmid= 88735 |doi= }}<br /> *{{cite journal | author=Saglio G, Ricco G, Mazza U, ''et al.'' |title=Human T gamma globin chain is a variant of A gamma chain (A gamma Sardinia). |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=76 |issue= 7 |pages= 3420–4 |year= 1979 |pmid= 291015 |doi= }}<br /> *{{cite journal | author=Poon R, Kan YW, Boyer HW |title=Sequence of the 3'-noncoding and adjacent coding regions of human gamma-globin mRNA. |journal=Nucleic Acids Res. |volume=5 |issue= 12 |pages= 4625–30 |year= 1979 |pmid= 318163 |doi= }}<br /> *{{cite journal | author=Grifoni V, Kamuzora H, Lehmann H, Charlesworth D |title=A new Hb variant: Hb F Sardinia gamma75(E19) isoleucine leads to threonine found in a family with Hb G Philadelphia, beta-chain deficiency and a Lepore-like haemoglobin indistinguishable from Hb A2. |journal=Acta Haematol. |volume=53 |issue= 6 |pages= 347–55 |year= 1975 |pmid= 808940 |doi= }}<br /> *{{cite journal | author=Proudfoot NJ, Brownlee GG |title=3' non-coding region sequences in eukaryotic messenger RNA. |journal=Nature |volume=263 |issue= 5574 |pages= 211–4 |year= 1976 |pmid= 822353 |doi= }}<br /> *{{cite journal | author=Marotta CA, Forget BG, Cohne-Solal M, ''et al.'' |title=Human beta-globin messenger RNA. I. Nucleotide sequences derived from complementary RNA. |journal=J. Biol. Chem. |volume=252 |issue= 14 |pages= 5019–31 |year= 1977 |pmid= 873928 |doi= }}<br /> *{{cite journal | author=Frier JA, Perutz MF |title=Structure of human foetal deoxyhaemoglobin. |journal=J. Mol. Biol. |volume=112 |issue= 1 |pages= 97–112 |year= 1977 |pmid= 881729 |doi= }}<br /> *{{cite journal | author=Ahern E, Holder W, Ahern V, ''et al.'' |title=Haemoglobin F Victoria Jubilee (alpha 2 A gamma 2 80 Asp-Try). |journal=Biochim. Biophys. Acta |volume=393 |issue= 1 |pages= 188–94 |year= 1975 |pmid= 1138921 |doi= }}<br /> *{{cite journal | author=Waye JS, Cai SP, Eng B, ''et al.'' |title=Clinical course and molecular characterization of a compound heterozygote for sickle hemoglobin and hemoglobin Kenya. |journal=Am. J. Hematol. |volume=41 |issue= 4 |pages= 289–91 |year= 1993 |pmid= 1283810 |doi= }}<br /> *{{cite journal | author=Bailey WJ, Hayasaka K, Skinner CG, ''et al.'' |title=Reexamination of the African hominoid trichotomy with additional sequences from the primate beta-globin gene cluster. |journal=Mol. Phylogenet. Evol. |volume=1 |issue= 2 |pages= 97–135 |year= 1994 |pmid= 1342932 |doi= }}<br /> *{{cite journal | author=Gottardi E, Losekoot M, Fodde R, ''et al.'' |title=Rapid identification by denaturing gradient gel electrophoresis of mutations in the gamma-globin gene promoters in non-deletion type HPFH. |journal=Br. J. Haematol. |volume=80 |issue= 4 |pages= 533–8 |year= 1992 |pmid= 1374633 |doi= }}<br /> *{{cite journal | author=Berry M, Grosveld F, Dillon N |title=A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin. |journal=Nature |volume=358 |issue= 6386 |pages= 499–502 |year= 1992 |pmid= 1379347 |doi= 10.1038/358499a0 }}<br /> *{{cite journal | author=Loudianos G, Moi P, Lavinha J, ''et al.'' |title=Normal delta-globin gene sequences in Sardinian nondeletional delta beta-thalassemia. |journal=Hemoglobin |volume=16 |issue= 6 |pages= 503–9 |year= 1993 |pmid= 1487421 |doi= }}<br /> *{{cite journal | author=Fucharoen S, Shimizu K, Fukumaki Y |title=A novel C-T transition within the distal CCAAT motif of the G gamma-globin gene in the Japanese HPFH: implication of factor binding in elevated fetal globin expression. |journal=Nucleic Acids Res. |volume=18 |issue= 17 |pages= 5245–53 |year= 1990 |pmid= 1698280 |doi= }}<br /> *{{cite journal | author=Plaseska D, Kutlar F, Wilson JB, ''et al.'' |title=Hb F-Jiangsu, the first gamma chain variant with a valine----methionine substitution: alpha 2A gamma 2 134(H12)Val----Met. |journal=Hemoglobin |volume=14 |issue= 2 |pages= 177–83 |year= 1991 |pmid= 1703137 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> {{protein-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=%CE%94-Globin&diff=100434306 Δ-Globin 2008-07-08T10:43:01Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=3045}}<br /> '''Hemoglobin, delta''', also known as '''HBD''', is a human [[gene]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The delta (HBD) and beta (HBB) genes are normally expressed in the adult: two alpha chains plus two beta chains constitute HbA, which in normal adult life comprises about 97% of the total hemoglobin. Two alpha chains plus two delta chains constitute HbA-2, which with HbF comprises the remaining 3% of adult hemoglobin. Five beta-like globin genes are found within a 45 kb cluster on chromosome 11 in the following order: 5'-epsilon--Ggamma--Agamma--delta--beta-3'. Mutations in the delta-globin gene are associated with beta-thalassemia.&lt;ref&gt;{{cite web | title = Entrez Gene: HBD hemoglobin, delta| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3045| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==See also==<br /> * [[Hemoglobin]]<br /> * [[Human β-globin locus]]<br /> * [[Thalassemia]]<br /> <br /> ==References==<br /> {{reflist}}<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Schillirò G, Russo-Mancuso G, Dibenedetto SP, ''et al.'' |title=Six rare hemoglobin variants found in Sicily. |journal=Hemoglobin |volume=15 |issue= 5 |pages= 431–7 |year= 1992 |pmid= 1802885 |doi= }}<br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Collins FS, Weissman SM |title=The molecular genetics of human hemoglobin. |journal=Prog. Nucleic Acid Res. Mol. Biol. |volume=31 |issue= |pages= 315–462 |year= 1985 |pmid= 6397774 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> {{protein-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Hexokinase_1&diff=193332649 Hexokinase 1 2008-07-08T10:20:34Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=3098}}<br /> '''Hexokinase 1''', also known as '''HK1''', is a human [[gene]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Hexokinases phosphorylate glucose to produce glucose-6-phosphate, thus committing glucose to the glycolytic pathway. This gene encodes a ubiquitous form of hexokinase which localizes to the outer membrane of mitochondria. Mutations in this gene have been associated with hemolytic anemia due to hexokinase deficiency. Alternative splicing of this gene results in five transcript variants which encode different isoforms, some of which are tissue-specific. Each isoform has a distinct N-terminus; the remainder of the protein is identical among all the isoforms. A sixth transcript variant has been described, but due to the presence of several stop codons, it is not thought to encode a protein.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: HK1 hexokinase 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3098| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Murakami K, Kanno H, Tancabelic J, Fujii H |title=Gene expression and biological significance of hexokinase in erythroid cells. |journal=Acta Haematol. |volume=108 |issue= 4 |pages= 204–9 |year= 2003 |pmid= 12432216 |doi= }}<br /> *{{cite journal | author=Daniele A, Altruda F, Ferrone M, ''et al.'' |title=Mapping of human hexokinase 1 gene to 10q11----qter. |journal=Hum. Hered. |volume=42 |issue= 2 |pages= 107–10 |year= 1992 |pmid= 1572668 |doi= }}<br /> *{{cite journal | author=Magnani M, Bianchi M, Casabianca A, ''et al.'' |title=A recombinant human 'mini'-hexokinase is catalytically active and regulated by hexose 6-phosphates. |journal=Biochem. J. |volume=285 ( Pt 1) |issue= |pages= 193–9 |year= 1992 |pmid= 1637300 |doi= }}<br /> *{{cite journal | author=Magnani M, Serafini G, Bianchi M, ''et al.'' |title=Human hexokinase type I microheterogeneity is due to different amino-terminal sequences. |journal=J. Biol. Chem. |volume=266 |issue= 1 |pages= 502–5 |year= 1991 |pmid= 1985912 |doi= }}<br /> *{{cite journal | author=Adams V, Griffin LD, Gelb BD, McCabe ER |title=Protein kinase activity of rat brain hexokinase. |journal=Biochem. Biophys. Res. Commun. |volume=177 |issue= 3 |pages= 1101–6 |year= 1991 |pmid= 2059200 |doi= }}<br /> *{{cite journal | author=Murakami K, Blei F, Tilton W, ''et al.'' |title=An isozyme of hexokinase specific for the human red blood cell (HKR) |journal=Blood |volume=75 |issue= 3 |pages= 770–5 |year= 1990 |pmid= 2297576 |doi= }}<br /> *{{cite journal | author=Nishi S, Seino S, Bell GI |title=Human hexokinase: sequences of amino- and carboxyl-terminal halves are homologous. |journal=Biochem. Biophys. Res. Commun. |volume=157 |issue= 3 |pages= 937–43 |year= 1989 |pmid= 3207429 |doi= }}<br /> *{{cite journal | author=Rijksen G, Akkerman JW, van den Wall Bake AW, ''et al.'' |title=Generalized hexokinase deficiency in the blood cells of a patient with nonspherocytic hemolytic anemia. |journal=Blood |volume=61 |issue= 1 |pages= 12–8 |year= 1983 |pmid= 6848140 |doi= }}<br /> *{{cite journal | author=Bianchi M, Magnani M |title=Hexokinase mutations that produce nonspherocytic hemolytic anemia. |journal=Blood Cells Mol. Dis. |volume=21 |issue= 1 |pages= 2–8 |year= 1995 |pmid= 7655856 |doi= 10.1006/bcmd.1995.0002 }}<br /> *{{cite journal | author=Blachly-Dyson E, Zambronicz EB, Yu WH, ''et al.'' |title=Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel. |journal=J. Biol. Chem. |volume=268 |issue= 3 |pages= 1835–41 |year= 1993 |pmid= 8420959 |doi= }}<br /> *{{cite journal | author=Aleshin AE, Zeng C, Fromm HJ, Honzatko RB |title=Crystallization and preliminary X-ray analysis of human brain hexokinase. |journal=FEBS Lett. |volume=391 |issue= 1-2 |pages= 9–10 |year= 1996 |pmid= 8706938 |doi= }}<br /> *{{cite journal | author=Visconti PE, Olds-Clarke P, Moss SB, ''et al.'' |title=Properties and localization of a tyrosine phosphorylated form of hexokinase in mouse sperm. |journal=Mol. Reprod. Dev. |volume=43 |issue= 1 |pages= 82–93 |year= 1996 |pmid= 8720117 |doi= 10.1002/(SICI)1098-2795(199601)43:1&lt;82::AID-MRD11&gt;3.0.CO;2-6 |doilabel=10.1002/(SICI)1098-2795(199601)43:1&amp;#60;82::AID-MRD11&amp;#62;3.0.CO;2-6 }}<br /> *{{cite journal | author=Mori C, Nakamura N, Welch JE, ''et al.'' |title=Testis-specific expression of mRNAs for a unique human type 1 hexokinase lacking the porin-binding domain. |journal=Mol. Reprod. Dev. |volume=44 |issue= 1 |pages= 14–22 |year= 1997 |pmid= 8722688 |doi= 10.1002/(SICI)1098-2795(199605)44:1&lt;14::AID-MRD2&gt;3.0.CO;2-W |doilabel=10.1002/(SICI)1098-2795(199605)44:1&amp;#60;14::AID-MRD2&amp;#62;3.0.CO;2-W }}<br /> *{{cite journal | author=Murakami K, Piomelli S |title=Identification of the cDNA for human red blood cell-specific hexokinase isozyme. |journal=Blood |volume=89 |issue= 3 |pages= 762–6 |year= 1997 |pmid= 9028305 |doi= }}<br /> *{{cite journal | author=Ruzzo A, Andreoni F, Magnani M |title=An erythroid-specific exon is present in the human hexokinase gene. |journal=Blood |volume=91 |issue= 1 |pages= 363–4 |year= 1998 |pmid= 9414310 |doi= }}<br /> *{{cite journal | author=Travis AJ, Foster JA, Rosenbaum NA, ''et al.'' |title=Targeting of a germ cell-specific type 1 hexokinase lacking a porin-binding domain to the mitochondria as well as to the head and fibrous sheath of murine spermatozoa. |journal=Mol. Biol. Cell |volume=9 |issue= 2 |pages= 263–76 |year= 1998 |pmid= 9450953 |doi= }}<br /> *{{cite journal | author=Aleshin AE, Zeng C, Bourenkov GP, ''et al.'' |title=The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. |journal=Structure |volume=6 |issue= 1 |pages= 39–50 |year= 1998 |pmid= 9493266 |doi= }}<br /> *{{cite journal | author=Ruzzo A, Andreoni F, Magnani M |title=Structure of the human hexokinase type I gene and nucleotide sequence of the 5' flanking region. |journal=Biochem. J. |volume=331 ( Pt 2) |issue= |pages= 607–13 |year= 1998 |pmid= 9531504 |doi= }}<br /> *{{cite journal | author=Aleshin AE, Zeng C, Bartunik HD, ''et al.'' |title=Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate. |journal=J. Mol. Biol. |volume=282 |issue= 2 |pages= 345–57 |year= 1998 |pmid= 9735292 |doi= 10.1006/jmbi.1998.2017 }}<br /> *{{cite journal | author=Murakami K, Kanno H, Miwa S, Piomelli S |title=Human HKR isozyme: organization of the hexokinase I gene, the erythroid-specific promoter, and transcription initiation site. |journal=Mol. Genet. Metab. |volume=67 |issue= 2 |pages= 118–30 |year= 1999 |pmid= 10356311 |doi= 10.1006/mgme.1999.2842 }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-10-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Psoriasin&diff=157495105 Psoriasin 2008-07-08T09:07:16Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=6278}}<br /> '''S100 calcium binding protein A7''', also known as '''S100A7''', is a human [[gene]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein differs from the other S100 proteins of known structure in its lack of calcium binding ability in one EF-hand at the N-terminus. This protein is markedly over-expressed in the skin lesions of psoriatic patients, but is excluded as a candidate gene for familial psoriasis susceptibility. The exact function of this protein is not known.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: S100A7 S100 calcium binding protein A7| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=6278| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Schäfer BW, Heizmann CW |title=The S100 family of EF-hand calcium-binding proteins: functions and pathology. |journal=Trends Biochem. Sci. |volume=21 |issue= 4 |pages= 134–40 |year= 1996 |pmid= 8701470 |doi= }}<br /> *{{cite journal | author=Watson PH, Leygue ER, Murphy LC |title=Psoriasin (S100A7). |journal=Int. J. Biochem. Cell Biol. |volume=30 |issue= 5 |pages= 567–71 |year= 1998 |pmid= 9693957 |doi= }}<br /> *{{cite journal | author=Rasmussen HH, van Damme J, Puype M, ''et al.'' |title=Microsequences of 145 proteins recorded in the two-dimensional gel protein database of normal human epidermal keratinocytes. |journal=Electrophoresis |volume=13 |issue= 12 |pages= 960–9 |year= 1993 |pmid= 1286667 |doi= }}<br /> *{{cite journal | author=Madsen P, Rasmussen HH, Leffers H, ''et al.'' |title=Molecular cloning, occurrence, and expression of a novel partially secreted protein &quot;psoriasin&quot; that is highly up-regulated in psoriatic skin. |journal=J. Invest. Dermatol. |volume=97 |issue= 4 |pages= 701–12 |year= 1991 |pmid= 1940442 |doi= }}<br /> *{{cite journal | author=Schäfer BW, Wicki R, Engelkamp D, ''et al.'' |title=Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. |journal=Genomics |volume=25 |issue= 3 |pages= 638–43 |year= 1995 |pmid= 7759097 |doi= }}<br /> *{{cite journal | author=Hoffmann HJ, Olsen E, Etzerodt M, ''et al.'' |title=Psoriasin binds calcium and is upregulated by calcium to levels that resemble those observed in normal skin. |journal=J. Invest. Dermatol. |volume=103 |issue= 3 |pages= 370–5 |year= 1994 |pmid= 8077703 |doi= }}<br /> *{{cite journal | author=Bürgisser DM, Siegenthaler G, Kuster T, ''et al.'' |title=Amino acid sequence analysis of human S100A7 (psoriasin) by tandem mass spectrometry. |journal=Biochem. Biophys. Res. Commun. |volume=217 |issue= 1 |pages= 257–63 |year= 1996 |pmid= 8526920 |doi= 10.1006/bbrc.1995.2772 }}<br /> *{{cite journal | author=Celis JE, Rasmussen HH, Vorum H, ''et al.'' |title=Bladder squamous cell carcinomas express psoriasin and externalize it to the urine. |journal=J. Urol. |volume=155 |issue= 6 |pages= 2105–12 |year= 1996 |pmid= 8618345 |doi= }}<br /> *{{cite journal | author=Brodersen DE, Etzerodt M, Madsen P, ''et al.'' |title=EF-hands at atomic resolution: the structure of human psoriasin (S100A7) solved by MAD phasing. |journal=Structure |volume=6 |issue= 4 |pages= 477–89 |year= 1998 |pmid= 9562557 |doi= }}<br /> *{{cite journal | author=Brodersen DE, Nyborg J, Kjeldgaard M |title=Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states. |journal=Biochemistry |volume=38 |issue= 6 |pages= 1695–704 |year= 1999 |pmid= 10026247 |doi= 10.1021/bi982483d }}<br /> *{{cite journal | author=Semprini S, Capon F, Bovolenta S, ''et al.'' |title=Genomic structure, promoter characterisation and mutational analysis of the S100A7 gene: exclusion of a candidate for familial psoriasis susceptibility. |journal=Hum. Genet. |volume=104 |issue= 2 |pages= 130–4 |year= 1999 |pmid= 10190323 |doi= }}<br /> *{{cite journal | author=Hagens G, Masouyé I, Augsburger E, ''et al.'' |title=Calcium-binding protein S100A7 and epidermal-type fatty acid-binding protein are associated in the cytosol of human keratinocytes. |journal=Biochem. J. |volume=339 ( Pt 2) |issue= |pages= 419–27 |year= 1999 |pmid= 10191275 |doi= }}<br /> *{{cite journal | author=Hagens G, Roulin K, Hotz R, ''et al.'' |title=Probable interaction between S100A7 and E-FABP in the cytosol of human keratinocytes from psoriatic scales. |journal=Mol. Cell. Biochem. |volume=192 |issue= 1-2 |pages= 123–8 |year= 1999 |pmid= 10331666 |doi= }}<br /> *{{cite journal | author=Al-Haddad S, Zhang Z, Leygue E, ''et al.'' |title=Psoriasin (S100A7) expression and invasive breast cancer. |journal=Am. J. Pathol. |volume=155 |issue= 6 |pages= 2057–66 |year= 1999 |pmid= 10595935 |doi= }}<br /> *{{cite journal | author=Dias Neto E, Correa RG, Verjovski-Almeida S, ''et al.'' |title=Shotgun sequencing of the human transcriptome with ORF expressed sequence tags. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 7 |pages= 3491–6 |year= 2000 |pmid= 10737800 |doi= }}<br /> *{{cite journal | author=Ruse M, Lambert A, Robinson N, ''et al.'' |title=S100A7, S100A10, and S100A11 are transglutaminase substrates. |journal=Biochemistry |volume=40 |issue= 10 |pages= 3167–73 |year= 2001 |pmid= 11258932 |doi= }}<br /> *{{cite journal | author=Enerbäck C, Porter DA, Seth P, ''et al.'' |title=Psoriasin expression in mammary epithelial cells in vitro and in vivo. |journal=Cancer Res. |volume=62 |issue= 1 |pages= 43–7 |year= 2002 |pmid= 11782356 |doi= }}<br /> *{{cite journal | author=Gemmill RM, Bemis LT, Lee JP, ''et al.'' |title=The TRC8 hereditary kidney cancer gene suppresses growth and functions with VHL in a common pathway. |journal=Oncogene |volume=21 |issue= 22 |pages= 3507–16 |year= 2002 |pmid= 12032852 |doi= 10.1038/sj.onc.1205437 }}<br /> }}<br /> {{refend}}<br /> <br /> {{gene-1-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=HBG2&diff=100467481 HBG2 2008-07-08T07:01:12Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=3048}}<br /> '''Hemoglobin, gamma G''', also known as '''HBG2''', is a human [[gene]].<br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The gamma globin genes (HBG1 and HBG2) are normally expressed in the fetal liver, spleen and bone marrow. Two gamma chains together with two alpha chains constitute fetal hemoglobin (HbF) which is normally replaced by adult hemoglobin (HbA) at birth. In some beta-thalassemias and related conditions, gamma chain production continues into adulthood. The two types of gamma chains differ at residue 136 where glycine is found in the G-gamma product (HBG2) and alanine is found in the A-gamma product (HBG1). The former is predominant at birth. The order of the genes in the beta-globin cluster is: 5'- epsilon -- gamma-G -- gamma-A -- delta -- beta--3'.&lt;ref&gt;{{cite web | title = Entrez Gene: HBG2 hemoglobin, gamma G| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3048| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Gelinas R, Yagi M, Endlich B, ''et al.'' |title=Sequences of G gamma, A gamma, and beta genes of the Greek (A gamma) HPFH mutant: evidence for a distal CCAAT box mutation in the A gamma gene. |journal=Prog. Clin. Biol. Res. |volume=191 |issue= |pages= 125–39 |year= 1985 |pmid= 2413469 |doi= }}<br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Anderson NL, Anderson NG |title=The human plasma proteome: history, character, and diagnostic prospects. |journal=Mol. Cell Proteomics |volume=1 |issue= 11 |pages= 845–67 |year= 2003 |pmid= 12488461 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> {{protein-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Phospholipid-transportierende_ATPase_ABCA_1&diff=55641179 Phospholipid-transportierende ATPase ABCA 1 2008-07-08T06:50:42Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=19}}<br /> '''ATP-binding cassette transporter ABCA1 (member 1 of human transporter sub-family ABCA''') is a human protein and [[gene]]. This transporter is a major regulator of cellular [[cholesterol]] and [[phospholipid]] [[homeostasis]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The membrane-associated protein encoded by this gene is a member of the superfamily of [[ATP-binding cassette transporter|ATP-binding cassette (ABC) transporters]]. ABC proteins transport various molecules across extra- and intracellular membranes. ABC genes are divided into seven distinct subfamilies (ABCA, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the ABCA subfamily. Members of the ABCA subfamily comprise the only major ABC subfamily found exclusively in multicellular eukaryotes. With cholesterol as its substrate, this protein functions as a cholesterol [[efflux]] pump in the cellular lipid removal pathway. Mutations in this gene have been associated with [[Tangier's disease]] and familial [[high-density lipoprotein]] deficiency.&lt;ref&gt;{{cite web | title = Entrez Gene: ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=19| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==See also==<br /> * [[ATP-binding cassette transporter]]<br /> <br /> ==References==<br /> {{reflist}}<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Oram JF |title=ATP-binding cassette transporter A1 and cholesterol trafficking. |journal=Curr. Opin. Lipidol. |volume=13 |issue= 4 |pages= 373–81 |year= 2003 |pmid= 12151852 |doi= }}<br /> *{{cite journal | author=Hong SH, Rhyne J, Zeller K, Miller M |title=ABCA1(Alabama): a novel variant associated with HDL deficiency and premature coronary artery disease. |journal=Atherosclerosis |volume=164 |issue= 2 |pages= 245–50 |year= 2003 |pmid= 12204794 |doi= }}<br /> *{{cite journal | author=Kozak M |title=Emerging links between initiation of translation and human diseases. |journal=Mamm. Genome |volume=13 |issue= 8 |pages= 401–10 |year= 2003 |pmid= 12226704 |doi= 10.1007/s00335-002-4002-5 }}<br /> *{{cite journal | author=Joyce C, Freeman L, Brewer HB, Santamarina-Fojo S |title=Study of ABCA1 function in transgenic mice. |journal=Arterioscler. Thromb. Vasc. Biol. |volume=23 |issue= 6 |pages= 965–71 |year= 2004 |pmid= 12615681 |doi= 10.1161/01.ATV.0000055194.85073.FF }}<br /> *{{cite journal | author=Singaraja RR, Brunham LR, Visscher H, ''et al.'' |title=Efflux and atherosclerosis: the clinical and biochemical impact of variations in the ABCA1 gene. |journal=Arterioscler. Thromb. Vasc. Biol. |volume=23 |issue= 8 |pages= 1322–32 |year= 2004 |pmid= 12763760 |doi= 10.1161/01.ATV.0000078520.89539.77 }}<br /> *{{cite journal | author=Nofer JR, Remaley AT |title=Tangier disease: still more questions than answers. |journal=Cell. Mol. Life Sci. |volume=62 |issue= 19-20 |pages= 2150–60 |year= 2005 |pmid= 16235041 |doi= 10.1007/s00018-005-5125-0 }}<br /> *{{cite journal | author=Yokoyama S |title=ABCA1 and biogenesis of HDL. |journal=J. Atheroscler. Thromb. |volume=13 |issue= 1 |pages= 1–15 |year= 2006 |pmid= 16505586 |doi= }}<br /> *{{cite journal | author=Schmitz G, Schambeck CM |title=Molecular defects in the ABCA1 pathway affect platelet function. |journal=Pathophysiol. Haemost. Thromb. |volume=35 |issue= 1-2 |pages= 166–74 |year= 2006 |pmid= 16855366 |doi= 10.1159/000093563 }}<br /> }}<br /> {{refend}}<br /> <br /> {{membrane-protein-stub}}<br /> {{Membrane transport proteins}}<br /> {{Lipoprotein metabolism}}<br /> [[Category:ABC transporters]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = no<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=%CE%91-Globin&diff=99509065 Α-Globin 2008-07-08T06:01:52Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=3039}}<br /> '''Hemoglobin, alpha 1''', also known as '''HBA1''', is a human [[gene]] encoding the [[hemoglobin]] protein.<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = The human alpha globin gene cluster located on chromosome 16 spans about 30 kb and includes seven loci: 5'- zeta - pseudozeta - mu - pseudoalpha-1 - alpha-2 - alpha-1 - theta - 3'. The alpha-2 (HBA2) and alpha-1 (HBA1) coding sequences are identical. These genes differ slightly over the 5' untranslated regions and the introns, but they differ significantly over the 3' untranslated regions. Two alpha chains plus two beta chains constitute HbA, which in normal adult life comprises about 97% of the total [[hemoglobin]]; alpha chains combine with delta chains to constitute HbA-2, which with HbF (fetal hemoglobin) makes up the remaining 3% of adult hemoglobin. Alpha [[thalassemia]]s result from deletions of each of the alpha genes as well as deletions of both HBA2 and HBA1; some nondeletion alpha thalassemias have also been reported.&lt;ref&gt;{{cite web | title = Entrez Gene: HBA1 hemoglobin, alpha 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=3039| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Turbpaiboon C, Svasti S, Sawangareetakul P, ''et al.'' |title=Hb Siam [alpha15(A13)Gly--&gt;Arg (alpha1) (GGT--&gt;CGT)] is a typical alpha chain hemoglobinopathy without an alpha-thalassemic effect. |journal=Hemoglobin |volume=26 |issue= 1 |pages= 77–81 |year= 2002 |pmid= 11939517 |doi= }}<br /> *{{cite journal | author=Yalçin A, Avcu F, Beyan C, ''et al.'' |title=A case of HB J-Meerut (or Hb J-Birmingham) [alpha 120(H3)Ala--&gt;Glu] |journal=Hemoglobin |volume=18 |issue= 6 |pages= 433–5 |year= 1995 |pmid= 7713747 |doi= }}<br /> *{{cite journal | author=Giardina B, Messana I, Scatena R, Castagnola M |title=The multiple functions of hemoglobin. |journal=Crit. Rev. Biochem. Mol. Biol. |volume=30 |issue= 3 |pages= 165–96 |year= 1995 |pmid= 7555018 |doi= }}<br /> *{{cite journal | author=Higgs DR, Vickers MA, Wilkie AO, ''et al.'' |title=A review of the molecular genetics of the human alpha-globin gene cluster. |journal=Blood |volume=73 |issue= 5 |pages= 1081–104 |year= 1989 |pmid= 2649166 |doi= }}<br /> *{{cite journal | author=Schillirò G, Russo-Mancuso G, Dibenedetto SP, ''et al.'' |title=Six rare hemoglobin variants found in Sicily. |journal=Hemoglobin |volume=15 |issue= 5 |pages= 431–7 |year= 1992 |pmid= 1802885 |doi= }}<br /> *{{cite journal | author=Vafa M, Troye-Blomberg M, Anchang J, ''et al.'' |title=Multiplicity of Plasmodium falciparum infection in asymptomatic children in Senegal: relation to transmission, age and erythrocyte variants. |journal=Malar. J. |volume=7 |issue= |pages= 17 |year= 2008 |pmid= 18215251 |doi= 10.1186/1475-2875-7-17 }}<br /> *{{cite journal | author=Datta P, Chakrabarty S, Chakrabarty A, Chakrabarti A |title=Membrane interactions of hemoglobin variants, HbA, HbE, HbF and globin subunits of HbA: effects of aminophospholipids and cholesterol. |journal=Biochim. Biophys. Acta |volume=1778 |issue= 1 |pages= 1–9 |year= 2008 |pmid= 17916326 |doi= 10.1016/j.bbamem.2007.08.019 }}<br /> *{{cite journal | author=Taylor JG, Ackah D, Cobb C, ''et al.'' |title=Mutations and polymorphisms in hemoglobin genes and the risk of pulmonary hypertension and death in sickle cell disease. |journal=Am. J. Hematol. |volume=83 |issue= 1 |pages= 6–14 |year= 2008 |pmid= 17724704 |doi= 10.1002/ajh.21035 }}<br /> *{{cite journal | author=Sahu SC, Simplaceanu V, Gong Q, ''et al.'' |title=Insights into the solution structure of human deoxyhemoglobin in the absence and presence of an allosteric effector. |journal=Biochemistry |volume=46 |issue= 35 |pages= 9973–80 |year= 2007 |pmid= 17691822 |doi= 10.1021/bi700935z }}<br /> *{{cite journal | author=Sorour Y, Heppinstall S, Porter N, ''et al.'' |title=Is routine molecular screening for common alpha-thalassaemia deletions necessary as part of an antenatal screening programme? |journal=Journal of medical screening |volume=14 |issue= 2 |pages= 60–1 |year= 2007 |pmid= 17626702 |doi= 10.1258/096914107781261981 }}<br /> *{{cite journal | author=Hung CC, Lee CN, Chen CP, ''et al.'' |title=Molecular assay of -alpha(3.7) and -alpha(4.2) deletions causing alpha-thalassemia by denaturing high-performance liquid chromatography. |journal=Clin. Biochem. |volume=40 |issue= 11 |pages= 817–21 |year= 2007 |pmid= 17512924 |doi= 10.1016/j.clinbiochem.2007.03.018 }}<br /> *{{cite journal | author=Ye BC, Zhang Z, Lei Z |title=Molecular analysis of alpha/beta-thalassemia in a southern Chinese population. |journal=Genet. Test. |volume=11 |issue= 1 |pages= 75–83 |year= 2007 |pmid= 17394396 |doi= 10.1089/gte.2006.0502 }}<br /> *{{cite journal | author=Dilley J, Ganesan A, Deepa R, ''et al.'' |title=Association of A1C with cardiovascular disease and metabolic syndrome in Asian Indians with normal glucose tolerance. |journal=Diabetes Care |volume=30 |issue= 6 |pages= 1527–32 |year= 2007 |pmid= 17351274 |doi= 10.2337/dc06-2414 }}<br /> *{{cite journal | author=Fonseka PV, Vasudevan G, Clarizia LJ, McDonald MJ |title=Temperature dependent soret spectral band shifts accompany human CN-mesohemoglobin assembly. |journal=Protein J. |volume=26 |issue= 4 |pages= 257–63 |year= 2007 |pmid= 17191128 |doi= 10.1007/s10930-006-9067-7 }}<br /> *{{cite journal | author=Sankar VH, Arya V, Tewari D, ''et al.'' |title=Genotyping of alpha-thalassemia in microcytic hypochromic anemia patients from North India. |journal=J. Appl. Genet. |volume=47 |issue= 4 |pages= 391–5 |year= 2007 |pmid= 17132905 |doi= }}<br /> *{{cite journal | author=Origa R, Sollaino MC, Giagu N, ''et al.'' |title=Clinical and molecular analysis of haemoglobin H disease in Sardinia: haematological, obstetric and cardiac aspects in patients with different genotypes. |journal=Br. J. Haematol. |volume=136 |issue= 2 |pages= 326–32 |year= 2007 |pmid= 17129226 |doi= 10.1111/j.1365-2141.2006.06423.x }}<br /> *{{cite journal | author=Hussein OA, Gefen Y, Zidan JM, ''et al.'' |title=LDL oxidation is associated with increased blood hemoglobin A1c levels in diabetic patients. |journal=Clin. Chim. Acta |volume=377 |issue= 1-2 |pages= 114–8 |year= 2007 |pmid= 17070510 |doi= 10.1016/j.cca.2006.09.002 }}<br /> *{{cite journal | author=Pan W, Galkin O, Filobelo L, ''et al.'' |title=Metastable mesoscopic clusters in solutions of sickle-cell hemoglobin. |journal=Biophys. J. |volume=92 |issue= 1 |pages= 267–77 |year= 2007 |pmid= 17040989 |doi= 10.1529/biophysj.106.094854 }}<br /> *{{cite journal | author=Pistrosch F, Koehler C, Wildbrett J, Hanefeld M |title=Relationship between diurnal glucose levels and HbA1c in type 2 diabetes. |journal=Horm. Metab. Res. |volume=38 |issue= 7 |pages= 455–9 |year= 2006 |pmid= 16933182 |doi= 10.1055/s-2006-947838 }}<br /> *{{cite journal | author=Chong YM, Tan JA, Zubaidah Z, ''et al.'' |title=Screening of concurrent alpha-thalassaemia 1 in beta-thalassaemia carriers. |journal=Med. J. Malaysia |volume=61 |issue= 2 |pages= 217–20 |year= 2006 |pmid= 16898315 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> {{protein-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = no<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=GRIA_3&diff=52170214 GRIA 3 2008-07-08T05:39:37Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=2892}}<br /> '''Glutamate receptor, ionotrophic, AMPA 3''', also known as '''GRIA3''', is a human [[gene]].&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: GRIA3 glutamate receptor, ionotrophic, AMPA 3| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=2892| accessdate = }}&lt;/ref&gt;<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. These receptors are heteromeric protein complexes with multiple subunits, each possessing transmembrane regions, and all arranged to form a ligand-gated ion channel. The classification of glutamate receptors is based on their activation by different pharmacologic agonists. This gene belongs to a family of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. Alternative splicing at this locus results in several different isoforms which may vary in their signal transduction properties.&lt;ref name=&quot;entrez&quot;&gt;{{cite web | title = Entrez Gene: GRIA3 glutamate receptor, ionotrophic, AMPA 3| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=2892| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==See also==<br /> * [[AMPA receptor]]<br /> <br /> ==References==<br /> {{reflist}}<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=McNamara JO, Eubanks JH, McPherson JD, ''et al.'' |title=Chromosomal localization of human glutamate receptor genes. |journal=J. Neurosci. |volume=12 |issue= 7 |pages= 2555–62 |year= 1992 |pmid= 1319477 |doi= }}<br /> *{{cite journal | author=Hollmann M, Hartley M, Heinemann S |title=Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition. |journal=Science |volume=252 |issue= 5007 |pages= 851–3 |year= 1991 |pmid= 1709304 |doi= }}<br /> *{{cite journal | author=Rampersad V, Elliott CE, Nutt SL, ''et al.'' |title=Human glutamate receptor hGluR3 flip and flop isoforms: cloning and sequencing of the cDNAs and primary structure of the proteins. |journal=Biochim. Biophys. Acta |volume=1219 |issue= 2 |pages= 563–6 |year= 1994 |pmid= 7918660 |doi= }}<br /> *{{cite journal | author=Rogers SW, Andrews PI, Gahring LC, ''et al.'' |title=Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. |journal=Science |volume=265 |issue= 5172 |pages= 648–51 |year= 1994 |pmid= 8036512 |doi= }}<br /> *{{cite journal | author=Tomiyama M, Rodriguez-Puertas R, Cortés R, ''et al.'' |title=Differential regional distribution of AMPA receptor subunit messenger RNAs in the human spinal cord as visualized by in situ hybridization. |journal=Neuroscience |volume=75 |issue= 3 |pages= 901–15 |year= 1997 |pmid= 8951883 |doi= }}<br /> *{{cite journal | author=Osten P, Srivastava S, Inman GJ, ''et al.'' |title=The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. |journal=Neuron |volume=21 |issue= 1 |pages= 99–110 |year= 1998 |pmid= 9697855 |doi= }}<br /> *{{cite journal | author=Srivastava S, Osten P, Vilim FS, ''et al.'' |title=Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP. |journal=Neuron |volume=21 |issue= 3 |pages= 581–91 |year= 1998 |pmid= 9768844 |doi= }}<br /> *{{cite journal | author=Hayashi T, Umemori H, Mishina M, Yamamoto T |title=The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. |journal=Nature |volume=397 |issue= 6714 |pages= 72–6 |year= 1999 |pmid= 9892356 |doi= 10.1038/16269 }}<br /> *{{cite journal | author=Amir R, Dahle EJ, Toriolo D, Zoghbi HY |title=Candidate gene analysis in Rett syndrome and the identification of 21 SNPs in Xq. |journal=Am. J. Med. Genet. |volume=90 |issue= 1 |pages= 69–71 |year= 2000 |pmid= 10602120 |doi= }}<br /> *{{cite journal | author=Gécz J, Barnett S, Liu J, ''et al.'' |title=Characterization of the human glutamate receptor subunit 3 gene (GRIA3), a candidate for bipolar disorder and nonspecific X-linked mental retardation. |journal=Genomics |volume=62 |issue= 3 |pages= 356–68 |year= 2000 |pmid= 10644433 |doi= 10.1006/geno.1999.6032 }}<br /> *{{cite journal | author=Aruscavage PJ, Bass BL |title=A phylogenetic analysis reveals an unusual sequence conservation within introns involved in RNA editing. |journal=RNA |volume=6 |issue= 2 |pages= 257–69 |year= 2000 |pmid= 10688364 |doi= }}<br /> *{{cite journal | author=Gahring L, Carlson NG, Meyer EL, Rogers SW |title=Granzyme B proteolysis of a neuronal glutamate receptor generates an autoantigen and is modulated by glycosylation. |journal=J. Immunol. |volume=166 |issue= 3 |pages= 1433–8 |year= 2001 |pmid= 11160179 |doi= }}<br /> *{{cite journal | author=Liu QJ, Gong YQ, Chen BX, ''et al.'' |title=[Linkage analysis and mutation detection of GRIA3 in Smith--Fineman--Myers syndrome] |journal=Yi Chuan Xue Bao |volume=28 |issue= 11 |pages= 985–90 |year= 2001 |pmid= 11725645 |doi= }}<br /> *{{cite journal | author=Hirbec H, Perestenko O, Nishimune A, ''et al.'' |title=The PDZ proteins PICK1, GRIP, and syntenin bind multiple glutamate receptor subtypes. Analysis of PDZ binding motifs. |journal=J. Biol. Chem. |volume=277 |issue= 18 |pages= 15221–4 |year= 2002 |pmid= 11891216 |doi= 10.1074/jbc.C200112200 }}<br /> *{{cite journal | author=Wyszynski M, Kim E, Dunah AW, ''et al.'' |title=Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting. |journal=Neuron |volume=34 |issue= 1 |pages= 39–52 |year= 2002 |pmid= 11931740 |doi= }}<br /> *{{cite journal | author=Tomiyama M, Rodríguez-Puertas R, Cortés R, ''et al.'' |title=Flip and flop splice variants of AMPA receptor subunits in the spinal cord of amyotrophic lateral sclerosis. |journal=Synapse |volume=45 |issue= 4 |pages= 245–9 |year= 2002 |pmid= 12125045 |doi= 10.1002/syn.10098 }}<br /> *{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}<br /> *{{cite journal | author=Ganor Y, Besser M, Ben-Zakay N, ''et al.'' |title=Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. |journal=J. Immunol. |volume=170 |issue= 8 |pages= 4362–72 |year= 2003 |pmid= 12682273 |doi= }}<br /> *{{cite journal | author=Flajolet M, Rakhilin S, Wang H, ''et al.'' |title=Protein phosphatase 2C binds selectively to and dephosphorylates metabotropic glutamate receptor 3. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=100 |issue= 26 |pages= 16006–11 |year= 2004 |pmid= 14663150 |doi= 10.1073/pnas.2136600100 }}<br /> *{{cite journal | author=Kolleker A, Zhu JJ, Schupp BJ, ''et al.'' |title=Glutamatergic plasticity by synaptic delivery of GluR-B(long)-containing AMPA receptors. |journal=Neuron |volume=40 |issue= 6 |pages= 1199–212 |year= 2004 |pmid= 14687553 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> == External links ==<br /> * {{MeshName|GRIA3+protein,+human}}<br /> <br /> {{membrane-protein-stub}}<br /> {{NLM content}}<br /> {{Ligand-gated ion channels}}<br /> [[Category:Ion channels]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Wilson-Protein&diff=52207079 Wilson-Protein 2008-07-08T04:43:29Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=540}}<br /> '''Wilson disease protein''' (also called '''ATP7B''') is an [[ATPase]] that transports [[copper]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = This gene is a member of the P-type cation transport ATPase family and encodes a protein with several membrane-spanning domains, an ATPase consensus sequence, a hinge domain, a phosphorylation site, and at least 2 putative copper-binding sites. This protein functions as a monomer, exporting copper out of the cells, such as the efflux of hepatic copper into the bile. Alternate transcriptional splice variants, encoding different isoforms with distinct cellular localizations, have been characterized. Mutations in this gene have been associated with Wilson disease (WD).&lt;ref&gt;{{cite web | title = Entrez Gene: ATP7B ATPase, Cu++ transporting, beta polypeptide| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=540| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==See also==<br /> * [[Wilson disease]]<br /> <br /> ==External links==<br /> * {{MeshName|Wilson+disease+protein}}<br /> <br /> ==References==<br /> {{reflist}}<br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Harris ED |title=Cellular copper transport and metabolism. |journal=Annu. Rev. Nutr. |volume=20 |issue= |pages= 291–310 |year= 2000 |pmid= 10940336 |doi= 10.1146/annurev.nutr.20.1.291 }}<br /> *{{cite journal | author=Cox DW, Moore SD |title=Copper transporting P-type ATPases and human disease. |journal=J. Bioenerg. Biomembr. |volume=34 |issue= 5 |pages= 333–8 |year= 2003 |pmid= 12539960 |doi= }}<br /> *{{cite journal | author=Lutsenko S, Efremov RG, Tsivkovskii R, Walker JM |title=Human copper-transporting ATPase ATP7B (the Wilson's disease protein): biochemical properties and regulation. |journal=J. Bioenerg. Biomembr. |volume=34 |issue= 5 |pages= 351–62 |year= 2003 |pmid= 12539962 |doi= }}<br /> *{{cite journal | author=Chappuis P, Bost M, Misrahi M, ''et al.'' |title=[Wilson disease: clinical and biological aspects] |journal=Ann. Biol. Clin. (Paris) |volume=63 |issue= 5 |pages= 457–66 |year= 2006 |pmid= 16230279 |doi= }}<br /> *{{cite journal | author=La Fontaine S, Mercer JF |title=Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. |journal=Arch. Biochem. Biophys. |volume=463 |issue= 2 |pages= 149–67 |year= 2007 |pmid= 17531189 |doi= 10.1016/j.abb.2007.04.021 }}<br /> *{{cite journal | author=Lutsenko S, LeShane ES, Shinde U |title=Biochemical basis of regulation of human copper-transporting ATPases. |journal=Arch. Biochem. Biophys. |volume=463 |issue= 2 |pages= 134–48 |year= 2007 |pmid= 17562324 |doi= 10.1016/j.abb.2007.04.013 }}<br /> }}<br /> {{refend}}<br /> <br /> {{biochem-stub}}<br /> {{ATPases}}<br /> <br /> [[es:ATP7B]]<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Histon_H2AX&diff=92071894 Histon H2AX 2008-07-08T04:32:22Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=3014}}<br /> '''H2AFX''' is one of several [[gene]]s coding for [[histone H2A]]. In humans and other [[eukaryotes]], the [[DNA]] is wrapped around [[histone]]-groups, consisting of [[core histones]] H2A, H2B, H3 and H4. Thus, the [[H2AFX]] contributes to the histone-formation and therefore the structure of DNA.<br /> <br /> H2AX becomes phosphorylated on serine 139, then called gamma-H2AX, as a reaction on DNA Double-strand breaks (DSB). The kinases of the PIKK-family ([[Ataxia telangiectasia mutated]], ATR and DNA-PKcs) are responsible for this phosphorylation, especially ATM. The modification can happen accidentally during replication fork collapse or in the response on ionizing radiation but also during controlled physiological processes such as V(D)J recombination. Gamma-H2AX is a sensitive target for looking at DSBs in cells. The role of the phosphorylated form of the histone in DNA repair is under discussion but it is known that because of the modification the DNA becomes less condensed. Delivering space for the recruitment of proteins necessary during repair of DSBs.<br /> <br /> ==References==<br /> {{reflist}}<br /> *[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=3014 ncbi]<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Redon C, Pilch D, Rogakou E, ''et al.'' |title=Histone H2A variants H2AX and H2AZ. |journal=Curr. Opin. Genet. Dev. |volume=12 |issue= 2 |pages= 162–9 |year= 2002 |pmid= 11893489 |doi= }}<br /> *{{cite journal | author=Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A |title=H2AX: the histone guardian of the genome. |journal=DNA Repair (Amst.) |volume=3 |issue= 8-9 |pages= 959–67 |year= 2005 |pmid= 15279782 |doi= 10.1016/j.dnarep.2004.03.024 }}<br /> *{{cite journal | author=Mannironi C, Bonner WM, Hatch CL |title=H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3' processing signals. |journal=Nucleic Acids Res. |volume=17 |issue= 22 |pages= 9113–26 |year= 1990 |pmid= 2587254 |doi= }}<br /> *{{cite journal | author=Banerjee S, Smallwood A, Hultén M |title=ATP-dependent reorganization of human sperm nuclear chromatin. |journal=J. Cell. Sci. |volume=108 ( Pt 2) |issue= |pages= 755–65 |year= 1995 |pmid= 7769017 |doi= }}<br /> *{{cite journal | author=Ivanova VS, Hatch CL, Bonner WM |title=Characterization of the human histone H2A.X gene. Comparison of its promoter with other H2A gene promoters. |journal=J. Biol. Chem. |volume=269 |issue= 39 |pages= 24189–94 |year= 1994 |pmid= 7929075 |doi= }}<br /> *{{cite journal | author=Ivanova VS, Zimonjic D, Popescu N, Bonner WM |title=Chromosomal localization of the human histone H2A.X gene to 11q23.2-q23.3 by fluorescence in situ hybridization. |journal=Hum. Genet. |volume=94 |issue= 3 |pages= 303–6 |year= 1994 |pmid= 8076949 |doi= }}<br /> *{{cite journal | author=Rogakou EP, Pilch DR, Orr AH, ''et al.'' |title=DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. |journal=J. Biol. Chem. |volume=273 |issue= 10 |pages= 5858–68 |year= 1998 |pmid= 9488723 |doi= }}<br /> *{{cite journal | author=El Kharroubi A, Piras G, Zensen R, Martin MA |title=Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. |journal=Mol. Cell. Biol. |volume=18 |issue= 5 |pages= 2535–44 |year= 1998 |pmid= 9566873 |doi= }}<br /> *{{cite journal | author=Rogakou EP, Boon C, Redon C, Bonner WM |title=Megabase chromatin domains involved in DNA double-strand breaks in vivo. |journal=J. Cell Biol. |volume=146 |issue= 5 |pages= 905–16 |year= 1999 |pmid= 10477747 |doi= }}<br /> *{{cite journal | author=Rogakou EP, Nieves-Neira W, Boon C, ''et al.'' |title=Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. |journal=J. Biol. Chem. |volume=275 |issue= 13 |pages= 9390–5 |year= 2000 |pmid= 10734083 |doi= }}<br /> *{{cite journal | author=Paull TT, Rogakou EP, Yamazaki V, ''et al.'' |title=A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. |journal=Curr. Biol. |volume=10 |issue= 15 |pages= 886–95 |year= 2001 |pmid= 10959836 |doi= }}<br /> *{{cite journal | author=Deng L, de la Fuente C, Fu P, ''et al.'' |title=Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. |journal=Virology |volume=277 |issue= 2 |pages= 278–95 |year= 2001 |pmid= 11080476 |doi= 10.1006/viro.2000.0593 }}<br /> *{{cite journal | author=Chen HT, Bhandoola A, Difilippantonio MJ, ''et al.'' |title=Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. |journal=Science |volume=290 |issue= 5498 |pages= 1962–5 |year= 2000 |pmid= 11110662 |doi= }}<br /> *{{cite journal | author=Chadwick BP, Willard HF |title=Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. |journal=Hum. Mol. Genet. |volume=10 |issue= 10 |pages= 1101–13 |year= 2001 |pmid= 11331621 |doi= }}<br /> *{{cite journal | author=Burma S, Chen BP, Murphy M, ''et al.'' |title=ATM phosphorylates histone H2AX in response to DNA double-strand breaks. |journal=J. Biol. Chem. |volume=276 |issue= 45 |pages= 42462–7 |year= 2001 |pmid= 11571274 |doi= 10.1074/jbc.C100466200 }}<br /> *{{cite journal | author=Ward IM, Chen J |title=Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. |journal=J. Biol. Chem. |volume=276 |issue= 51 |pages= 47759–62 |year= 2002 |pmid= 11673449 |doi= 10.1074/jbc.C100569200 }}<br /> *{{cite journal | author=Deng L, Wang D, de la Fuente C, ''et al.'' |title=Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA. |journal=Virology |volume=289 |issue= 2 |pages= 312–26 |year= 2001 |pmid= 11689053 |doi= 10.1006/viro.2001.1129 }}<br /> *{{cite journal | author=Chen A, Kleiman FE, Manley JL, ''et al.'' |title=Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. |journal=J. Biol. Chem. |volume=277 |issue= 24 |pages= 22085–92 |year= 2002 |pmid= 11927591 |doi= 10.1074/jbc.M201252200 }}<br /> *{{cite journal | author=Zhu H, Hunter TC, Pan S, ''et al.'' |title=Residue-specific mass signatures for the efficient detection of protein modifications by mass spectrometry. |journal=Anal. Chem. |volume=74 |issue= 7 |pages= 1687–94 |year= 2003 |pmid= 12033261 |doi= }}<br /> }}<br /> {{refend}}<br /> <br /> {{biochemistry-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot https://de.wikipedia.org/w/index.php?title=Breakpoint_Cluster_Region&diff=52172158 Breakpoint Cluster Region 2008-07-08T03:56:24Z <p>ProteinBoxBot: Replaced protein Box Template with PBB Template for easy viewing.</p> <hr /> <div>{{PBB|geneid=613}}<br /> The '''BCR gene''' is one of the two genes in the bcr-abl complex, which is associated with the [[Philadelphia chromosome]].<br /> <br /> &lt;!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --&gt;<br /> {{PBB_Summary<br /> | section_title = <br /> | summary_text = A reciprocal translocation between chromosomes 22 and 9 produces the Philadelphia chromosome, which is often found in patients with chronic myelogenous leukemia. The chromosome 22 breakpoint for this translocation is located within the BCR gene. The translocation produces a fusion protein which is encoded by sequence from both BCR and ABL, the gene at the chromosome 9 breakpoint. Although the BCR-ABL fusion protein has been extensively studied, the function of the normal BCR gene product is not clear. The protein has serine/threonine kinase activity and is a GTPase-activating protein for p21rac. Two transcript variants encoding different isoforms have been found for this gene.&lt;ref&gt;{{cite web | title = Entrez Gene: BCR breakpoint cluster region| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&amp;Cmd=ShowDetailView&amp;TermToSearch=613| accessdate = }}&lt;/ref&gt;<br /> }}<br /> <br /> ==See also==<br /> * [[Abl gene]]<br /> <br /> ==External links==<br /> * {{MeshName|BCR+protein,+human}}<br /> <br /> <br /> ==References==<br /> {{reflist}}<br /> <br /> ==Further reading==<br /> {{refbegin | 2}}<br /> {{PBB_Further_reading <br /> | citations = <br /> *{{cite journal | author=Wang L, Seale J, Woodcock BE, Clark RE |title=e19a2-positive chronic myeloid leukaemia with BCR exon e16-deleted transcripts. |journal=Leukemia |volume=16 |issue= 8 |pages= 1562–3 |year= 2002 |pmid= 12145699 |doi= 10.1038/sj.leu.2402600 }}<br /> }}<br /> {{refend}}<br /> <br /> {{protein-stub}}<br /> {{biochem-stub}}<br /> <br /> &lt;!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --&gt;<br /> {{PBB_Controls<br /> | update_page = yes <br /> | require_manual_inspection = no <br /> | update_protein_box = yes<br /> | update_summary = yes<br /> | update_citations = yes<br /> }}</div> ProteinBoxBot