https://de.wikipedia.org/w/api.php?action=feedcontributions&feedformat=atom&user=AugPi Wikipedia - Benutzerbeiträge [de] 2025-04-26T22:43:51Z Benutzerbeiträge MediaWiki 1.44.0-wmf.25 https://de.wikipedia.org/w/index.php?title=Entropische_Gravitation&diff=166906430 Entropische Gravitation 2010-09-24T03:52:48Z <p>AugPi: typo fix</p> <hr /> <div>[[Image:NewtonsLawOfUniversalGravitation.svg|thumb|right|200px|Verlinde's statistical description of gravity as an entropic force leads to the correct [[Newton's law of universal gravitation|inverse square distance law of attraction between classical bodies]].]]<br /> <br /> The hypothesis of '''gravity being an entropic force''', also called '''entropic gravity''', has a history that goes back to research on [[black hole]] thermodynamics by [[Jacob Bekenstein|Bekenstein]] and [[Stephen Hawking|Hawking]] in the mid-1970s. These studies suggest a deep connection between [[gravity]] and thermodynamics, which describes the behavior of heat and gases. In 1995, [[Theodore Jacobson|Jacobson]] demonstrated that the [[Einstein equations]] describing relativistic gravitation can be derived by combining general thermodynamic considerations with the [[equivalence principle]].&lt;ref&gt;{{cite web|last=Jacobson|first=Theodore|title=Thermodynamics of Spacetime: The Einstein Equation of State|url=http://arxiv.org/abs/gr-qc/9504004|publisher=arXiv.org|accessdate=6 September 2010|doi=10.1103/PhysRevLett.75.1260|date=4 April 1995}}&lt;/ref&gt; Subsequently, other physicists began to explore links between gravity and [[entropy]].&lt;ref&gt;{{cite web|last=Padmanabhan|first=Thanu|title=Thermodynamical Aspects of Gravity: New insights|url=http://arxiv.org/abs/0911.5004|publisher=arXiv.org|accessdate=6 September 2010|date=26 November 2009}}&lt;/ref&gt;<br /> <br /> In 2009, [[Erik Verlinde]] disclosed a conceptual theory that describes gravity as an entropic force.&lt;ref&gt;{{cite news|last=van Calmthout|first=Martijn|title=Is Einstein een beetje achterhaald?|url=http://www.volkskrant.nl/wetenschap/article1326775.ece/Is_Einstein_een_beetje_achterhaald|accessdate=6 September 2010|newspaper=de Volkskrant|date=12 December 2009|language=Dutch}}&lt;/ref&gt; On January 6, 2010 he published a preprint of a 29 page paper titled &quot;On the Origin of Gravity and the Laws of Newton&quot;.&lt;ref name=&quot;VerlindePaper&quot;&gt;{{cite web|last=Verlinde|first=Eric|title=Title: On the Origin of Gravity and the Laws of Newton|url=http://arxiv.org/abs/1001.0785|publisher=arXiv.org|accessdate=6 September 2010|date=6 January, 2010}}&lt;/ref&gt; Reversing the logic of over 300 years, it argued that gravity is a consequence of the laws of thermodynamics. This theory combines the thermodynamic approach to gravity with [[Gerardus 't Hooft]]'s [[holographic principle]]. If proven correct, this implies gravity is not a [[fundamental interaction]], but an [[emergent phenomenon]] which arises from the statistical behavior of microscopic [[Degrees of freedom (physics and chemistry)|degrees of freedom]] encoded on a holographic screen. The paper drew a variety of responses from the scientific community. [[Andrew Strominger]], a string theorist at Harvard said “Some people have said it can’t be right, others that it’s right and we already knew it — that it’s right and profound, right and trivial.&quot;&lt;ref name=&quot;nytimes&quot;&gt;{{cite news|last=Overbye|first=Dennis|title=A Scientist Takes On Gravity|url=http://www.nytimes.com/2010/07/13/science/13gravity.html?_r=1|accessdate=6 September 2010|newspaper=[[The New York Times]]|date=July 12 2010}}&lt;/ref&gt;<br /> <br /> Verlinde's article also attracted a large amount of media exposure,&lt;ref&gt;[http://www.newscientist.com/article/mg20527443.800-the-entropy-force-a-new-direction-for-gravity.html?page=1 The entropy force: a new direction for gravity], [[New Scientist]], 20 January 2010, issue 2744&lt;/ref&gt;&lt;ref&gt;[http://www.wired.com/beyond_the_beyond/2010/01/gravity-is-an-entropic-form-of-holographic-information/ Gravity is an entropic form of holographic information], ''[[Wired Magazine]]'', 20 January 2010&lt;/ref&gt; and led to immediate follow-up work in cosmology,&lt;ref&gt;[http://arxiv.org/abs/1001.3237v1 Equipartition of energy and the first law of thermodynamics at the apparent horizon], Fu-Wen Shu, Yungui Gong, 2010&lt;/ref&gt;&lt;ref&gt;[http://arxiv.org/abs/1001.3470v1 Friedmann equations from entropic force], Rong-Gen Cai, Li-Ming Cao, Nobuyoshi Ohta 2010&lt;/ref&gt; the [[dark energy|dark energy hypothesis]],&lt;ref&gt;[http://www.scientificblogging.com/hammock_physicist/it_bit_how_get_rid_dark_energy It from Bit: How to get rid of dark energy], Johannes Koelman, 2010&lt;/ref&gt; [[Metric expansion of space|cosmological acceleration]],&lt;ref&gt;[http://arXiv.org/abs/1002.4278 Entropic Accelerating Universe], Damien Easson, Paul Frampton, George Smoot, 2010&lt;/ref&gt;&lt;ref&gt;[http://arxiv.org/abs/1003.4526 Entropic cosmology: a unified model of inflation and late-time acceleration], Yi-Fu Cai, Jie Liu, Hong Li, 2010&lt;/ref&gt; [[Inflation (cosmology)|cosmological inflation]],&lt;ref&gt;[http://arxiv.org/abs/1001.4786v1 Towards a holographic description of inflation and generation of fluctuations from thermodynamics], Yi Wang, 2010&lt;/ref&gt; and [[loop quantum gravity]].&lt;ref&gt;[http://arxiv.org/abs/1001.3668v1 Newtonian gravity in loop quantum gravity], [[Lee Smolin]], 2010&lt;/ref&gt; Also, a specific microscopic model has been proposed that indeed leads to entropic gravity emerging at large scales.&lt;ref&gt;[http://arxiv.org/abs/1001.3808v1 Notes concerning &quot;On the origin of gravity and the laws of Newton&quot; by E. Verlinde], Jarmo Makela, 2010&lt;/ref&gt;<br /> <br /> ==Informal summary==<br /> {{expert|Physics}}<br /> Basically this theory says gravity is not an original force, but a resulting effect. This is based on the theoretical idea that the surface of a black hole contains all the information from the 3 dimensional world falling onto it. Its surface is 2 dimensional, there is no inside only the outer surface can contain (record) the information from everything that falls on it, in a sense if things fall on this surface they are converted to 2 dimensions. Now take that simple idea, as in physics formulas work in both directions of the time lets do this in reverse. Play a time movie of a black hole in reverse. In reverse time this 2 dimensional recording sends back gravity and the 3rd dimension. So if that 2 dimensional state is a perfect holographic recording of everything falling onto it, then gravity is the distortion of that perfect representation. Gravity kicks it out of such a perfect state, so its a entropic effect resulting in the 3rd dimension.<br /> <br /> ==See also==<br /> *[[Entropic Spacetime Theory]]<br /> *[[Ideal_chain#Entropic_elasticity_of_an_ideal_chain|Entropic elasticity of an ideal chain]]<br /> *[[Entropic force]]<br /> *[[Gravitation]]<br /> *[[Induced gravity]]<br /> <br /> ==References==<br /> {{Reflist}}<br /> <br /> ==Further reading==<br /> *[http://www.science20.com/hammock_physicist/it_bit_entropic_gravity_pedestrians It from bit - Entropic gravity for pedestrians], J. Koelman<br /> *[http://www.imsc.res.in/~iagrg/IagrgSite/Activities/IagrgMeetings/25th_Iagrg/VRtalk.pdf Gravity: the inside story], T Padmanabhan<br /> <br /> {{Use dmy dates|date=August 2010}}<br /> {{Theories of gravitation}}<br /> <br /> {{DEFAULTSORT:Gravity As An Entropic Force}}<br /> [[Category:Theories of gravitation]]<br /> [[Category:Information theory]]<br /> [[Category:Thermodynamics]]<br /> <br /> [[zh:引力的熵力假说]]</div> AugPi https://de.wikipedia.org/w/index.php?title=Cayleygraph&diff=60382487 Cayleygraph 2006-06-06T19:57:42Z <p>AugPi: /* Another example */ group presentation</p> <hr /> <div>[[Image:Cayley graph of F2.svg|right|thumb|The Cayley graph of the [[free group]] on two generators ''a'' and ''b'']]<br /> <br /> In [[mathematics]], a '''Cayley graph''', named after [[Arthur Cayley]], is a [[graph theory|graph]] that encodes the structure of a [[group (mathematics)|group]]. It is a central tool in [[combinatorial group theory|combinatorial]] and [[geometric group theory]]. <br /> <br /> Let &lt;math&gt;G&lt;/math&gt; be a group, and let &lt;math&gt;S&lt;/math&gt; be a [[generating set of a group|generating set]] for &lt;math&gt;G&lt;/math&gt;. The Cayley graph of &lt;math&gt;G&lt;/math&gt; with respect to &lt;math&gt;S&lt;/math&gt; has a vertex for every element of &lt;math&gt;G&lt;/math&gt;, with an edge from &lt;math&gt;g&lt;/math&gt; to &lt;math&gt;gs&lt;/math&gt; for all elements &lt;math&gt;g\in G&lt;/math&gt; and &lt;math&gt;s\in S&lt;/math&gt;. <br /> <br /> == Example ==<br /> For example, the Cayley graph of the [[free group]] on two generators &lt;math&gt;a&lt;/math&gt; and &lt;math&gt;b&lt;/math&gt; is depicted above and to the right. (Note that &lt;math&gt;e&lt;/math&gt; represents the [[identity element]].) Travelling right along an edge represents multiplying on the right by &lt;math&gt;a&lt;/math&gt;, while travelling up corresponds to multiplying by &lt;math&gt;b&lt;/math&gt;. Since the free group has no [[relation (mathematics)|relation]]s, the graph has no cycles.<br /> <br /> == Another example ==<br /> [[Image:CayleyGraphOfDihedralGroupD4.PNG|300px|right|thumb|The Cayley graph of the dihedral group D&lt;sub&gt;4&lt;/sub&gt; on two generators &amp;alpha; and &amp;beta;]]<br /> The Cayley graph of the [[dihedral group]] ''D''&lt;sub&gt;4&lt;/sub&gt; on two generators &amp;alpha; and &amp;beta; is depicted to the right. Red arrows represent left-multiplication by element &amp;alpha;. Since element &amp;beta; is [[Cayley table|self-inverse]], the blue lines which represent left-multiplication by element &amp;beta; are undirected. Therefore the graph is mixed: it has eight vertices, eight arrows, and four edges.<br /> <br /> The [[Cayley table]] of the group ''D''&lt;sub&gt;4&lt;/sub&gt; can be derived from the [[presentation of a group|group presentation]]<br /> &lt;math&gt; \langle \alpha, \beta | \alpha^4 = \beta^2 = e, \alpha \beta = \beta \alpha^3 \rangle &lt;/math&gt;.<br /> <br /> == Variations ==<br /> The above definition gives a connected, directed graph. There are a number of slight variations on the definition:<br /> <br /> #Usually &lt;math&gt;S&lt;/math&gt; is not allowed to contain the identity element &lt;math&gt;e&lt;/math&gt;. <br /> #If the set &lt;math&gt;S&lt;/math&gt; doesn't generate the whole group, the Cayley graph isn't connected.<br /> #In some contexts, left multiplication is used instead of right. That is, edges go from &lt;math&gt;g&lt;/math&gt; to &lt;math&gt;sg&lt;/math&gt;.<br /> #In many contexts, the generating set is assumed to be ''symmetric'', meaning that &lt;math&gt;s^{-1}&lt;/math&gt; is in &lt;math&gt;S&lt;/math&gt; whenever &lt;math&gt;s&lt;/math&gt; is. In this case, the graph is undirected.<br /> <br /> == The Sabidussi Theorem ==<br /> &lt;math&gt;G&lt;/math&gt; [[group action|acts]] on itself by multiplication on the left. This action induces an action of &lt;math&gt;G&lt;/math&gt; on its Cayley graph. Explicitly, an element &lt;math&gt;h&lt;/math&gt; sends a vertex &lt;math&gt;g&lt;/math&gt; to the vertex &lt;math&gt;hg&lt;/math&gt;, and the edge &lt;math&gt;(g,gs)&lt;/math&gt; to the edge &lt;math&gt;(hg,hgs)&lt;/math&gt;. Since the action of &lt;math&gt;G&lt;/math&gt; on itself is [[transitive]], any Cayley graph is [[vertex-transitive]]. The [[Sabidussi theorem]] gives a characterization of Cayley graphs: <br /> Graph &lt;math&gt;X&lt;/math&gt; is a Cayley graph if and only if the automorphism group of &lt;math&gt;X&lt;/math&gt; contains a subgroup &lt;math&gt;G&lt;/math&gt; acting regularly on the vertex set of &lt;math&gt;X&lt;/math&gt;. <br /> <br /> == Schreier coset graph ==<br /> If one, instead, takes the vertices to be right cosets of a fixed subgroup &lt;math&gt;H&lt;/math&gt;, one obtains a related construction, the [[Schreier coset graph]], which is at the basis of [[coset enumeration]] or the [[Todd-Coxeter process]].<br /> <br /> == Connection to graph theory ==<br /> Insights into the structure of the group can be obtained by studying the [[adjacency matrix]] of the graph and in particular applying the theorems of [[spectral graph theory]].<br /> <br /> A standard Cayley graph for the [[direct product]] of groups is the [[cartesian product]] of the corresponding Cayley graphs. For instance, a [[cycle graph|cycle]] &lt;math&gt;C_n&lt;/math&gt; is a Cayley graph for the [[cyclic group]] &lt;math&gt;Z_n&lt;/math&gt;. Therefore<br /> the cartesian product &lt;math&gt; C_n \square C_m &lt;/math&gt;, (an n by m grid on [[torus]]) is<br /> a Cayley graph for the direct product &lt;math&gt; Z_n \times Z_m&lt;/math&gt;.<br /> <br /> == See also ==<br /> * [[Vertex-transitive graph]]<br /> * [[Generating set of a group]]<br /> * [[Presentation of a group]]<br /> * [[Lovász conjecture]]<br /> <br /> [[Category:Group theory]]<br /> [[Category:Permutation groups]]<br /> [[Category:Graphs]]<br /> [[Category:Geometric group theory]]<br /> [[Category:Algebraic graph theory]]</div> AugPi https://de.wikipedia.org/w/index.php?title=Cayleygraph&diff=60382486 Cayleygraph 2006-06-06T16:01:13Z <p>AugPi: another example</p> <hr /> <div>[[Image:Cayley graph of F2.svg|right|thumb|The Cayley graph of the [[free group]] on two generators ''a'' and ''b'']]<br /> <br /> In [[mathematics]], a '''Cayley graph''', named after [[Arthur Cayley]], is a [[graph theory|graph]] that encodes the structure of a [[group (mathematics)|group]]. It is a central tool in [[combinatorial group theory|combinatorial]] and [[geometric group theory]]. <br /> <br /> Let &lt;math&gt;G&lt;/math&gt; be a group, and let &lt;math&gt;S&lt;/math&gt; be a [[generating set of a group|generating set]] for &lt;math&gt;G&lt;/math&gt;. The Cayley graph of &lt;math&gt;G&lt;/math&gt; with respect to &lt;math&gt;S&lt;/math&gt; has a vertex for every element of &lt;math&gt;G&lt;/math&gt;, with an edge from &lt;math&gt;g&lt;/math&gt; to &lt;math&gt;gs&lt;/math&gt; for all elements &lt;math&gt;g\in G&lt;/math&gt; and &lt;math&gt;s\in S&lt;/math&gt;. <br /> <br /> == Example ==<br /> For example, the Cayley graph of the [[free group]] on two generators &lt;math&gt;a&lt;/math&gt; and &lt;math&gt;b&lt;/math&gt; is depicted above and to the right. (Note that &lt;math&gt;e&lt;/math&gt; represents the [[identity element]].) Travelling right along an edge represents multiplying on the right by &lt;math&gt;a&lt;/math&gt;, while travelling up corresponds to multiplying by &lt;math&gt;b&lt;/math&gt;. Since the free group has no [[relation (mathematics)|relation]]s, the graph has no cycles.<br /> <br /> == Another example ==<br /> [[Image:CayleyGraphOfDihedralGroupD4.PNG|300px|right|thumb|The Cayley graph of the dihedral group D&lt;sub&gt;4&lt;/sub&gt; on two generators &amp;alpha; and &amp;beta;]]<br /> The Cayley graph of the [[dihedral group]] ''D''&lt;sub&gt;4&lt;/sub&gt; on two generators &amp;alpha; and &amp;beta; is depicted to the right. Red arrows represent left-multiplication by element &amp;alpha;. Since element &amp;beta; is [[Cayley table|self-inverse]], the blue lines which represent left-multiplication by element &amp;beta; are undirected. Therefore the graph is mixed: it has eight vertices, eight arrows, and four edges.<br /> &lt;!--<br /> &amp;nbsp;<br /> <br /> &amp;nbsp;<br /> <br /> &amp;nbsp;<br /> <br /> &amp;nbsp;<br /> <br /> &amp;nbsp;<br /> <br /> &amp;nbsp; --&gt;<br /> <br /> == Variations ==<br /> The above definition gives a connected, directed graph. There are a number of slight variations on the definition:<br /> <br /> #Usually &lt;math&gt;S&lt;/math&gt; is not allowed to contain the identity element &lt;math&gt;e&lt;/math&gt;. <br /> #If the set &lt;math&gt;S&lt;/math&gt; doesn't generate the whole group, the Cayley graph isn't connected.<br /> #In some contexts, left multiplication is used instead of right. That is, edges go from &lt;math&gt;g&lt;/math&gt; to &lt;math&gt;sg&lt;/math&gt;.<br /> #In many contexts, the generating set is assumed to be ''symmetric'', meaning that &lt;math&gt;s^{-1}&lt;/math&gt; is in &lt;math&gt;S&lt;/math&gt; whenever &lt;math&gt;s&lt;/math&gt; is. In this case, the graph is undirected.<br /> <br /> == The Sabidussi Theorem ==<br /> &lt;math&gt;G&lt;/math&gt; [[group action|acts]] on itself by multiplication on the left. This action induces an action of &lt;math&gt;G&lt;/math&gt; on its Cayley graph. Explicitly, an element &lt;math&gt;h&lt;/math&gt; sends a vertex &lt;math&gt;g&lt;/math&gt; to the vertex &lt;math&gt;hg&lt;/math&gt;, and the edge &lt;math&gt;(g,gs)&lt;/math&gt; to the edge &lt;math&gt;(hg,hgs)&lt;/math&gt;. Since the action of &lt;math&gt;G&lt;/math&gt; on itself is [[transitive]], any Cayley graph is [[vertex-transitive]]. The [[Sabidussi theorem]] gives a characterization of Cayley graphs: <br /> Graph &lt;math&gt;X&lt;/math&gt; is a Cayley graph if and only if the automorphism group of &lt;math&gt;X&lt;/math&gt; contains a subgroup &lt;math&gt;G&lt;/math&gt; acting regularly on the vertex set of &lt;math&gt;X&lt;/math&gt;. <br /> <br /> == Schreier coset graph ==<br /> If one, instead, takes the vertices to be right cosets of a fixed subgroup &lt;math&gt;H&lt;/math&gt;, one obtains a related construction, the [[Schreier coset graph]], which is at the basis of [[coset enumeration]] or the [[Todd-Coxeter process]].<br /> <br /> == Connection to graph theory ==<br /> Insights into the structure of the group can be obtained by studying the [[adjacency matrix]] of the graph and in particular applying the theorems of [[spectral graph theory]].<br /> <br /> A standard Cayley graph for the [[direct product]] of groups is the [[cartesian product]] of the corresponding Cayley graphs. For instance, a [[cycle graph|cycle]] &lt;math&gt;C_n&lt;/math&gt; is a Cayley graph for the [[cyclic group]] &lt;math&gt;Z_n&lt;/math&gt;. Therefore<br /> the cartesian product &lt;math&gt; C_n \square C_m &lt;/math&gt;, (an n by m grid on [[torus]]) is<br /> a Cayley graph for the direct product &lt;math&gt; Z_n \times Z_m&lt;/math&gt;.<br /> <br /> == See also ==<br /> * [[Vertex-transitive graph]]<br /> * [[Generating set of a group]]<br /> * [[Presentation of a group]]<br /> * [[Lovász conjecture]]<br /> <br /> [[Category:Group theory]]<br /> [[Category:Permutation groups]]<br /> [[Category:Graphs]]<br /> [[Category:Geometric group theory]]<br /> [[Category:Algebraic graph theory]]</div> AugPi